Conferences

Permanent URI for this collectionhttps://repositorio.grial.eu/handle/123456789/13

Browse

Search Results

Now showing 1 - 10 of 131
  • Thumbnail Image
    Item
    Uso de la IA generativa en la docencia
    (Grupo GRIAL, 2026-02-06) García-Peñalvo, Francisco José
    Conferencia plenaria invitada de 1 hora de duración impartida en las II Jornadas de Inteligencia Artificial para la Docencia Universitaria de la Universidad de La Laguna, celebradas en el Salón de Actos del Edificio de Ciencias de la Comunicación “La Pirámide”, La Laguna, Tenerife, España, el 6 de febrero de 2026. Se explora el impacto disruptivo de la Inteligencia Artificial Generativa (IAGen) en la educación superior. Se define la IAGen como una tecnología capaz de producir contenidos sintéticos inéditos en diversos formatos, marcando un punto de inflexión por su accesibilidad e integración en la vida cotidiana del ciudadano. Uno de los grandes desafíos analizados son las “alucinaciones”, fenómenos donde los modelos generan información falsa o inventada que resulta coherente, incluyendo citas bibliográficas inexistentes o errores lógicos. Asimismo, se aborda el “mito de la muerte de la originalidad”, señalando que, si bien la IA facilita el trabajo superficial, puede socavar la integridad académica y el aprendizaje genuino si se emplea de forma acrítica. Ante esta realidad, el autor propone transitar de la prohibición hacia una regulación ética basada en el reconocimiento del uso de la IA, tratándola como una herramienta legítima siempre que se declare de forma transparente. La ponencia defiende un cambio de paradigma fundamental: pasar de la visión del “reemplazo” a la del “aumento”. Bajo este enfoque, la IA no busca sustituir al docente, sino actuar como un instrumento avanzado dentro de una "orquesta" dirigida por humanos. Surge así el concepto de “Inteligencia Híbrida”, definida como la capacidad de alcanzar objetivos complejos mediante la combinación de la inteligencia humana y la artificial para lograr resultados superiores. En este ecosistema, lo “híbrido” trasciende la dualidad presencial/virtual para integrar humanos, IA, datos y responsabilidad. Para garantizar una implementación segura, se presentan marcos de referencia clave como las orientaciones de la UNESCO, el Reglamento de IA de la Unión Europea (AI Act) y el “Safe AI in Education Manifesto”. Estos marcos enfatizan principios esenciales como la supervisión humana, la transparencia en el contenido sintético, la privacidad y la equidad. En el plano práctico, se proponen tres escenarios de uso graduados por autonomía y riesgo: el apoyo responsable al trabajo docente, la colaboración guiada en actividades de aula y la cocreación por parte del estudiantado para su propio aprendizaje. Cada escenario exige niveles específicos de alfabetización y plantea retos en la evaluación auténtica, donde el proceso de interacción y el juicio crítico cobran más relevancia que el producto final. Finalmente, la conferencia concluye que la tecnología no es neutral y que el profesorado debe liderar esta transformación. Es imperativo fomentar una “alfabetización crítica” que permita discernir las capacidades reales de la IA, automatizar tareas tediosas y centrar el esfuerzo educativo en el desarrollo de la creatividad y la autonomía intelectual. El éxito reside en enriquecer la orquesta educativa con este nuevo instrumento, manteniendo siempre el propósito humano como guía pedagógica.
  • Thumbnail Image
    Item
    Estrategias para gestionar el uso de la inteligencia artificial en la práctica docente
    (Grupo GRIAL, 2026-02-03) García-Peñalvo, Francisco José
    Conferencia plenaria invitada de 1 hora de duración impartida en las VIII Jornadas de Experiencias Docentes de la Universitat de les Illes Balears, celebradas el 3 de febrero de 2026 en el edificio Gaspar Melchor de Jovellanos, Palma de Mallorca. Se plantea un marco práctico para gestionar el uso de la inteligencia artificial generativa (IAGen) en docencia, partiendo de una aclaración conceptual: la IA se entiende como sistemas que actúan con cierto grado de autonomía para lograr objetivos, mientras que la IAGen se centra en la producción de contenidos sintéticos inéditos (texto, imagen, audio, vídeo, código, etc.) mediante modelización generativa. A partir de ahí, se subraya que la educación ya convive con contenidos generados automáticamente difíciles de atribuir con certeza, lo que alimenta debates (a veces polarizados) sobre integridad, evaluación y aprendizaje. Uno de los ejes es reducir la discusión “prohibir vs permitir” y moverla hacia cómo usar estas herramientas con sentido pedagógico: no tanto “cómo evitar que el estudiantado engañe”, sino cómo incorporarlas de manera que se aprenda. Para ello, se destacan riesgos bien conocidos, como las alucinaciones y la fabricación de información plausible pero falsa, y el “mito de la muerte de la originalidad”: la IAGen puede producir trabajos “originales” que no son copias, pero tampoco expresan autoría genuina, favoreciendo el trabajo superficial si se usa de forma acrítica. En coherencia, se apunta a que existe consenso institucional en considerar plagio el texto totalmente generado por IA sin reconocimiento y se propone una respuesta regulatoria y ética basada en declarar el uso. Se ofrecen pautas concretas de reconocimiento (qué herramienta, con qué propósito, iteraciones, qué se incorpora y cómo se adapta), junto con la idea de que la alfabetización crítica no es solo “saber usar”, sino usar con juicio dentro de valores académicos. El núcleo propositivo articula un cambio de paradigma: del reemplazo al aumento, entendiendo la IA como “instrumento” que docentes y estudiantes dirigen para potenciar el aprendizaje, y defendiendo ecosistemas híbridos donde la IA potencia la inteligencia humana en lugar de sustituirla. En esa línea, se introduce la colaboración persona-IA como aumento de metas, percepción/interpretación, acción y decisión, siempre con supervisión humana. Se recuerda además el valor educativo del proceso de interacción (prompts y diálogo): el proceso puede ser tan importante como el resultado. Para operativizarlo, se proponen tres escenarios graduados por autonomía, agencia y riesgo: (1) apoyo responsable (IA como soporte al trabajo docente), (2) colaboración guiada (IA integrada en actividades con estudiantes) y (3) cocreación con declaración reforzada (estudiantes usando IA para aprender). En los tres aparecen principios recurrentes: transparencia (definir usos aceptables/obligatorios y cómo declararlos), privacidad, equidad (accesos desiguales), sostenibilidad (licencias/recursos) y evaluación auténtica centrada en el proceso, evitando confianza ciega en detectores y usando evidencias (vivas, trabajo en clase, iteraciones, entregas incrementales…). Todo ello se encuadra en marcos de referencia (UNESCO, AI Act, SAFE y el Safe AI in Education Manifesto) para asegurar una adopción segura, responsable y alineada con fines educativos.
  • Thumbnail Image
    Item
    Introduciendo la Inteligencia Artificial en el ciclo de investigación bajo un comportamiento ético
    (Grupo GRIAL, 2026-01-28) García-Peñalvo, Francisco José
    La conferencia “Introduciendo la Inteligencia Artificial en el ciclo de investigación bajo un comportamiento ético” se ha impartido en el IA in Education Summit: Responsible, Equitable, and Systematic Transformation, celebrado dentro del IFE Conference 2026 del 27 al 29 de enero de 2026 en el Tecnológico de Monterrey, Monterrey, Nuevo León (México). Concretamente, esta conferencia tuvo lugar el 28 de enero, con una duración de 30 minutos. La gran disrupción reciente en IA proviene de la inteligencia artificial generativa (IAGen), entendida como la capacidad de producir contenidos sintéticos inéditos (texto, imagen, audio, vídeo, presentaciones) para apoyar tareas diversas, con un impacto social potencialmente abrumador por su integración en la vida cotidiana. En el ámbito de la investigación, se subraya que la generación automática de contenido académico ya es una realidad y que la calidad alcanzada permite su uso como material de investigación; a la vez, se advierte que la investigación y la transferencia no son inmunes a discursos inflados, mitos e inexactitudes sobre la IA (catastrofismo vs. “solucionismo tecnológico”). Se ofrece un panorama de herramientas generalistas basadas en texto (algunas multimodales) y se introduce una idea clave: las herramientas generalistas suponen un riesgo en contextos de investigación, por lo que su adopción debe ser crítica y situada. La charla estructura el uso de la IAGen a lo largo de todo el ciclo de investigación: desde la generación de ideas, objetivos e hipótesis, el estado de la cuestión, el desarrollo de código, la recogida y análisis de datos, hasta la redacción, publicación y comunicación; la ética y la transparencia actúan como eje transversal. Como base normativa y ética, se presentan principios para un uso responsable: fiabilidad (verificación y reproducción), honestidad (revelar el uso), respeto (privacidad, confidencialidad, propiedad intelectual y citación) y responsabilidad (agencia humana y supervisión). En la misma línea, se introduce la alfabetización crítica: no basta con saber usar herramientas, sino hacerlo con juicio dentro de valores y prácticas académicas. En cuanto a marcos de referencia, se alinean las recomendaciones de la UNESCO, el AI Act y el Safe AI in Education Manifesto como un continuo entre guía ética y regulación legal, y se resume su aterrizaje en investigación: validación ética, protección de datos y PI, trazabilidad (registrar herramienta/versión/prompts y declarar uso), triaje de riesgo y debida diligencia con proveedores, y protocolos human-in-the-loop. Se aportan ejemplos de reconocimiento del uso (Monash) y guías editoriales (Wiley), destacando qué debe declararse (redacción/edición, metodología, código, análisis y visuales) y qué información conviene documentar (nombre/versión, fecha, función, secciones afectadas, rol del autor y cumplimiento de privacidad en datos sensibles). También se aborda la revisión por pares: los manuscritos son confidenciales y no deben cargarse en aplicaciones de IA; se proponen usos seguros (mejorar claridad/tono, traducción, consultas generales sin detalles del manuscrito). Las conclusiones enfatizan que la IAGen ofrece beneficios, pero su punto crítico es la trazabilidad: muchas herramientas no la garantizan robustamente, lo que puede reducir la transparencia, complicar la atribución de autoría y aumentar el riesgo de contenido no verificado (alucinaciones). Se remarca que la IA puede aumentar la eficiencia, pero no sustituye capacidades humanas esenciales, y que, aunque los marcos establecen una base común, la decisión ética no se automatiza y cada investigador y equipo debe definir sus líneas rojas según contexto, riesgo y datos, asumiendo responsabilidad por su aplicación.
  • Thumbnail Image
    Item
    Ecosistemas de aprendizaje híbridos: Orquestando la colaboración entre personas e inteligencia artificial
    (Grupo GRIAL, 2026-01-08) García-Peñalvo, Francisco José
    Conferencia plenaria invitada de 1 hora de duración impartida en las X Jornadas Docentes de la Facultad de Ingeniería – Inteligencia Híbrida en la Educación Superior, organizadas por la Unidad de Investigación Docente y Desarrollo Académico (UNIDA) de la Facultad de Ingeniería de la Universidad Andrés Bello. Estas jornadas se desarrollaron en Santiago (Chile) el 8 y 9 de enero de 2026 y esta conferencia se impartió el 8 de enero de 2026. Se plantea que “lo híbrido” ya no puede entenderse como una simple combinación de presencial + online, sino como un ecosistema más completo que integra presencial + online + IA + datos + responsabilidad. En ese marco, la inteligencia híbrida se define como la capacidad de lograr objetivos complejos combinando inteligencia humana y artificial para obtener resultados mejores que los alcanzables por separado. La tesis se refuerza con una idea de sinergia: el valor está en la interacción y la coevolución humano–tecnología (no en sustituir al humano), donde la tecnología libera de lo repetitivo para dedicar energía a creación, estrategia y juicio. A partir de ahí, se introduce el salto desde “herramientas sueltas” a ecosistemas: un ecosistema tecnológico se concibe como un conjunto de componentes software conectados por flujos de información, sostenidos en un entorno físico, con los usuarios como parte del sistema; aplicado al aprendizaje, el objetivo es una red de servicios de aprendizaje y no una colección de “herramientas de moda”. Para orquestar la colaboración persona–IA, la presentación propone un marco de “aumentos” donde la IA y las personas se amplifican mutuamente: metas (se influyen recíprocamente), percepción e interpretación (la IA detecta patrones y datos; el humano aporta contexto), acción (la IA escala acciones como retroalimentación inmediata; el humano crea/personaliza acciones) y decisión (la IA apoya; el humano supervisa y corrige). El núcleo técnico-pedagógico se apoya en la idea de que el ecosistema se sostiene sobre datos y su ciclo de uso: detectar → preparar → diagnosticar → actuar → evaluar. Se distingue además entre intervenciones “blandas” (informar mediante paneles de control, retroalimentación formativa, alertas tempranas, recomendaciones) y “duras” (automatizar adaptación de tareas, retroalimentación paso a paso, asignación automática de práctica, generación guiada). La regla es clara: cuanto más “dura” la automatización, más exigencias de explicabilidad, trazabilidad, control humano y evaluación de sesgos. Se introducen con cuidado las señales multimodales y el componente biométrico. Se enumeran señales de conducta (mirada, postura, teclado/ratón), fisiología (frecuencia cardíaca, actividad electrodérmica, respiración) y contexto (audio/ruido, ubicación, condiciones), subrayando que la fisiología tiene alta sensibilidad, pero también alto riesgo de privacidad e interpretación. De ahí se deriva un mensaje práctico: priorizar evidencias de aprendizaje (interacciones + artefactos) y usar multimodalidad solo si añade valor pedagógico y con controles fuertes. En el caso de la biometría, se listan riesgos (consentimiento, clima panóptico, seguridad, interpretación errónea, sesgos) y controles mínimos (opt-out, minimización, propósito explícito, procesamiento local, revisión humana antes de actuar y auditoría). Como ejemplo “aterrizado”, se propone un laboratorio de programación sin biometría: entradas como commits/tests, errores recurrentes, tiempos en ejercicios y preguntas en foro; modelos de machine learning clásico (predicción/clustering) junto con modelos generativos (retroalimentación formativa); y salidas como alerta al docente, recomendación de práctica, retroalimentación en borrador y priorización de tutoría humana. El bloque decisivo es el de los tres escenarios de uso de IA como “regulador de potencia”. La pregunta guía no es “usar IA sí/no”, sino “cuánta autonomía se da y con qué garantías”. Se formula un principio de proporcionalidad: a mayor impacto educativo y riesgo, más transparencia, más evidencias y más auditoría, y se cambia el tipo de evidencia exigida (declaración → trazabilidad → auditoría). En la parte final, la conferencia conecta ética con práctica mediante marcos y garantías (UNESCO, AI Act, SAFE, Safe AI in Education Manifesto) y advierte sobre la crisis de confianza: confundir “IA” con solo LLM, o asumir transparencia por explicaciones post-hoc (SHAP/LIME) puede crear una falsa sensación de interpretabilidad. El cierre refuerza la metáfora orquestal: el objetivo no es un “solista perfecto”, sino una orquesta enriquecida, donde el profesorado actúa como director y la tecnología se adapta a la pedagogía. La síntesis final queda en una frase: “Más IA, sí; pero con más humanidad, más evidencia y más responsabilidad”.
  • Thumbnail Image
    Item
    Inteligencia Artificial Generativa y su influencia en los procesos educativos
    (Grupo GRIAL, 2025-12-03) García-Peñalvo, Francisco José
    Clase magistral y taller de inteligencia artificial generativa (IAGen) impartidos en el contexto de la Unidad I: Gestión de la Tecnología y del Conocimiento, de la asignatura Diseño y Evaluación de Recursos Informáticos del Máster Universitario en las TIC en la Educación: Análisis y Diseño de Procesos, Recursos y Prácticas Formativas, el día 3 de diciembre de 2025 en la Facultad de Educación, Universidad de Salamanca. La inteligencia artificial generativa, con ChatGPT como emblema, está transformando la educación y, en particular, los procesos de enseñanza, aprendizaje e investigación en la universidad. A la hora de construir un relato sobre su uso en la academia, es importante no limitarse a describir herramientas, sino que se debe construir un marco conceptual, ético y normativo para decidir cómo usarlas, con qué fines y en qué condiciones, proponiendo una hoja de ruta razonada para el profesorado. El punto de partida es la constatación de que la inteligencia artificial (IA) ya forma parte del ecosistema educativo. Hoy la IA puede ser simultáneamente objeto de estudio, herramienta de aprendizaje y entorno en el que se aprende. Se diferencia entre aprender sobre la IA (comprender sus fundamentos, límites y sesgos), aprender con la IA (usar sistemas de recomendación, analítica de aprendizaje o tutores inteligentes para mejorar la docencia) y aprender a través de la IA, cuando esta se convierte en medio principal de acceso al conocimiento, como ocurre con los tutores adaptativos o los asistentes personales avanzados. Este contexto se enmarca en iniciativas internacionales como el Consenso de Beijing sobre IA y educación, que insiste en planificar la IA en las políticas educativas, apoyar a la docencia, favorecer el aprendizaje a lo largo de la vida y promover un uso equitativo, ético y transparente de los datos y algoritmos. La idea clave es que la IA no es un añadido accesorio, sino un factor estructural que condiciona la manera de aprender, trabajar y participar en la sociedad. A partir de ahí, el material introduce de forma accesible la irrupción de la IAGen. subraya que ya es posible generar automáticamente contenido educativo en múltiples formatos (texto, imagen, vídeo, audio, presentaciones) con calidad suficiente para ser usado como material docente o como producto de tareas académicas, muchas veces sin que sea viable detectar con certeza su origen. Esto abre oportunidades, pero también tensiona los modelos de evaluación, la autoría y la integridad académica. Se alerta además frente a los mitos y exageraciones asociados a la IA, tanto los catastrofistas como los excesivamente optimistas, que alimentan un solucionismo tecnológico ajeno a los matices de la práctica educativa real. Uno de los hilos conductores es el dilema de Prometeo. Ante una tecnología poderosa, opaca y propensa a alucinaciones, ¿la respuesta educativa debe ser prohibir su uso o aprender a integrarla críticamente? El recurso insiste en que la prohibición es una falsa solución, porque el estudiantado ya utiliza estas herramientas en todos los niveles educativos. La cuestión relevante no es tanto si se usarán, sino cómo lograr que su uso contribuya a un aprendizaje más profundo y honesto. En este marco se analizan las oportunidades y retos de la IAGen en la universidad. Para el profesorado, los beneficios potenciales incluyen el enriquecimiento del contenido educativo, el apoyo a la creatividad y la productividad, la mejora de la evaluación y la posibilidad de personalizar el aprendizaje del alumnado, además de favorecer su propia competencia digital. El reverso de la moneda son riesgos como el recelo ante el uso estudiantil de la IA, la sobrevaloración de sus capacidades, su utilización inadecuada, la dependencia tecnológica, la pérdida de autoría, la despersonalización de la relación pedagógica y las amenazas a la privacidad. En el caso del estudiantado, se señalan potenciales impactos positivos en el pensamiento crítico y la creatividad, el prototipado de ideas, el aprendizaje personalizado, la productividad y el desarrollo de competencias digitales. Pero también se advierte del peligro de un aprendizaje superficial, el uso deshonesto, la falta de capacidad para curar la información, la pérdida de pensamiento crítico, la despersonalización y las brechas de acceso entre quienes pueden usar estas herramientas en buenas condiciones y quienes no. Algo similar ocurre con la investigación: la IAGen puede acelerar procesos, automatizar tareas rutinarias y abrir vías de innovación, pero también plantear problemas de alucinaciones no detectadas, debates éticos, falta de curación del contenido, sesgos y vulneraciones de privacidad. Para ordenar esta discusión, el recurso dedica una parte importante a los marcos normativos y éticos que orientan el uso responsable de la IA. Se presentan las orientaciones de la UNESCO sobre IA y educación, que priorizan los derechos humanos, la inclusión y el desarrollo sostenible, y la necesidad de alfabetizar en IA tanto a profesorado como a estudiantes, diseñar experiencias centradas en la persona y fortalecer la capacidad institucional. Se resume el AI Act de la Unión Europea, una regulación basada en el riesgo que establece categorías de sistemas, obligaciones de transparencia y seguridad y, muy especialmente, el artículo 50 sobre el marcado del contenido generado por IA, que obliga a identificar los materiales sintéticos. Junto a ello se describe el marco SAFE, que organiza la reflexión en torno a cuatro principios: seguridad (Safety), responsabilidad (Accountability), justicia (Fairness) y eficacia (Efficacy), con especial atención a la coherencia con los principios éticos en educación y al diseño de actividades que garanticen estos criterios. Finalmente se presenta el Safe AI in Education Manifesto, que defiende que la IA en educación debe estar siempre al servicio de las personas y de los fines formativos, subrayando principios como la agencia del estudiantado, la verificación de la información, la inclusión, la transparencia, el derecho de apelación y la necesidad de explicitar cómo se usan los datos y las fuentes. Un apartado especialmente relevante es el dedicado a las tres grandes formas de integrar la IA en educación, formuladas como escenarios graduados por autonomía, agencia y riesgo. En el primero, el profesorado usa herramientas de IA como apoyo a su trabajo (por ejemplo, para preparar materiales, diseñar rúbricas o generar ejemplos). En el segundo, el profesorado incorpora esas herramientas en actividades con el estudiantado, lo que exige una alfabetización elevada en ambos colectivos y una definición clara de qué herramientas son aceptables, con qué usos y cómo debe declararse su empleo. En el tercero, el estudiantado utiliza por su cuenta herramientas de IA para aprender, lo que aumenta el riesgo y hace aún más necesaria la competencia digital y la capacidad de mantener la agencia sobre el propio aprendizaje. En todos los escenarios se enfatizan principios comunes: transparencia (declarar en qué procesos se usa la IA), evaluación auténtica centrada en el proceso y apoyada en evidencias (trabajo en clase, entregas incrementales, diarios o cuadernos de laboratorio) en lugar de confiar ciegamente en detectores de texto generado, equidad (garantizar que todo el estudiantado pueda realizar las tareas aunque no disponga de las mismas herramientas) y protección de la privacidad, especialmente en lo relativo a datos clínicos u otros datos sensibles. La presentación aterriza estos principios en una serie de roles y aplicaciones concretas de la IAGen en educación. Se describen, por ejemplo, funciones como la de “compañero de estudios” que ayuda al alumnado a reflexionar y preparar tareas; la de “motivador” que propone retos y actividades para ampliar el aprendizaje; o la de “evaluador dinámico” capaz de perfilar el conocimiento actual de cada estudiante y generar herramientas de autoevaluación, siempre que se mantenga el control humano y se diseñen estrategias claras de uso. Otras aplicaciones incluyen la generación de cuestionarios, rúbricas, explicaciones adaptadas al nivel del estudiante, guías de estudio, ejemplos de buena práctica o estímulos para el debate crítico. Todo esto lleva a la idea de alfabetización crítica en IA generativa. No basta con saber usar herramientas, sino que hay que usarlas con juicio, integrándolas en valores y prácticas académicas sólidas. Se ofrecen pautas para el reconocimiento explícito del uso de IAGen en trabajos académicos: explicar qué herramientas se han utilizado y con qué objetivos, indicar el número de iteraciones, describir los resultados incorporados, detallar las instrucciones empleadas y explicar cómo se ha integrado el output en el producto final. Esta práctica enlaza con las exigencias del AI Act y con la cultura de transparencia que promueven las universidades. Se presentan casos de uso detallados, donde se muestran flujos de trabajo que integran IAGen para ampliar contenidos, sintetizar bibliografía, analizar transcripciones de audio con herramientas como otter.ai, elaborar nubes de palabras o realizar investigación en profundidad mediante agentes que combinan razonamiento y búsqueda en múltiples fuentes. Estos casos están pensados para ilustrar cómo se pueden diseñar actividades que aprovechen las capacidades de la IA sin delegar en ella el juicio académico ni la responsabilidad última sobre el aprendizaje. Se reconoce que la IA amplifica problemas ya existentes en el sistema educativo, como la la superficialidad del aprendizaje, las desigualdades de acceso o la presión por la productividad, pero también que abre oportunidades sin precedentes para experimentar con nuevas formas de enseñar y aprender. Lejos de la retórica apocalíptica o ingenuamente entusiasta, se propone evitar que la ilusión eclipse la preocupación, pero también que la preocupación neutralice la ilusión. El salto vivido con ChatGPT y otras herramientas exige estudiar, diseñar, experimentar y evaluar sin descanso, con prudencia, pero con audacia, descartando la idea de que la tecnología vaya a arruinar por sí misma la educación. Se trata de ofrecer una visión panorámica y crítica de la IA generativa en educación. Se sitúan las herramientas en su contexto tecnológico e histórico, se exponen sus beneficios y riesgos para los distintos actores, se introducen los principales marcos éticos y normativos, se proponen escenarios operativos para su integración en la práctica docente y se ofrecen ejemplos concretos de uso responsable. Todo ello converge en un mensaje central, la IAGen no es un fin en sí mismo, sino un conjunto de instrumentos que, gestionados con criterio pedagógico, sentido ético y conocimiento del marco regulatorio, pueden contribuir a una educación más personalizada, inclusiva y orientada al desarrollo de competencias para la vida en la era de la IA.
  • Thumbnail Image
    Item
    IA en Educación: Tres escenarios clave para aplicar la IA en la práctica docente
    (Grupo GRIAL, 2025-11-19) García-Peñalvo, Francisco José
    Conferencia plenaria invitada de 1 hora de duración impartida en las XII Jornadas Iberoamericanas de Innovación Educativa en el ámbito de las TIC y las TAC - InnoEducaTIC 2025, celebradas del 19 al 21 de noviembre de 2025 en el Edificio de Electrónica y Telecomunicación de la Universidad de Las Palmas de Gran Canaria, ubicado en el Campus Universitario de Tafira. Esta conferencia se impartió en modo online el 19 de noviembre. Se presenta un recorrido estructurado sobre cómo integrar la inteligencia artificial generativa (IAGen) en la educación desde una perspectiva crítica, apoyándose en marcos internacionales y desembocando en tres escenarios de uso para la práctica docente. Se inicia recordando qué es la IA y, en concreto, la IAGen: sistemas capaces de generar contenido sintético original (texto, imágenes, audio, vídeo, código…) con calidad suficiente como para convertirse en material docente o en productos entregables de los estudiantes, difíciles de detectar como generados por máquinas. Tras una breve aclaración de conceptos (IA, modelos de lenguaje masivos, parámetros, ventana de contexto), se plantea el cambio de escala que suponen los LLM y su rápida cronología reciente. A partir de ahí, se introduce el impacto específico en educación: generación automática de contenidos en múltiples formatos, que abre oportunidades, pero también refuerza el problema de la detección y la autoría real de los trabajos. Se señala que la educación no ha quedado al margen del ruido mediático: abundan visiones catastrofistas (la IA destruirá la escuela o anulará la originalidad) y visiones ingenuamente entusiastas (la IA como solución mágica a todos los problemas). Se menciona el “dilema de Prometeo”: ¿tiene sentido prohibir la IAGen como medida de protección, dado su carácter de caja negra y su tendencia a alucinar, o debemos aprender a convivir con ella? Esta tensión está en el fondo del debate educativo actual. Uno de los mensajes centrales es que el estudiantado ya usa estas herramientas en todos los niveles educativos. Los datos recientes sobre educación superior muestran un aumento constante del uso por parte de estudiantes, docentes y administradores, así como un cambio en la carga de trabajo del profesorado: disminuye el tiempo dedicado a diseñar materiales o responder correos, pero aumenta la vigilancia del fraude y la necesidad de rediseñar la evaluación. La pregunta ya no es “si las usarán”, sino “cómo las estamos integrando”. A continuación, se abordan los riesgos específicos, especialmente las alucinaciones: respuestas plausibles pero falsas, contradicciones internas, errores lógicos, invención de citas bibliográficas, etc. Estas limitaciones se conectan con el “mito de la muerte de la originalidad”: la IA permite trabajos formalmente originales que no proceden del esfuerzo del estudiante, facilitando un aprendizaje superficial y amenazando la autoría genuina si se emplea de modo acrítico. Ante esta realidad, muchas instituciones consideran el texto generado íntegramente por IA sin reconocimiento como una forma de plagio. Se está transitando hacia modelos en los que se aceptan ciertos usos, pero con regulación ética y exigencia de transparencia. Se propone, como mínimo, una declaración explícita del uso de IA que describa herramientas empleadas, propósitos, instrucciones clave y cómo se ha adaptado el resultado. Se muestran ejemplos concretos de la Universidad de Monash, que ilustran buenas prácticas para incluir este reconocimiento en los trabajos académicos. Sobre esta base se introduce la alfabetización crítica en IA: no basta con saber manejar herramientas, sino con situar su uso dentro de valores y prácticas académicas. Se resumen cuatro ideas operativas: verificar antes de adoptar; garantizar equidad e inclusión; mantener la agencia humana explícita en la toma de decisiones; y asegurar transparencia y rendición de cuentas documentando el uso de IA. Estos principios se articulan con varios marcos de referencia: las orientaciones de la UNESCO, el Reglamento Europeo de IA (AI Act), el marco SAFE (Safe, Accountable, Fair, Explainable) y el Manifiesto Safe AI in Education, que insiste en la supervisión humana, la confidencialidad, la precisión y la explicabilidad. Se pasa después a una dimensión más práctica: la “caja de herramientas” de IA en educación (transcripción, generación de texto, imagen, audio, vídeo, infografías, presentaciones, chatbots multimodales…). Se insiste en que la calidad de la respuesta depende del prompt y del contexto que se aporta al modelo; un mejor contexto permite respuestas más útiles y ajustadas. Esto es pedagógicamente relevante, porque el proceso de diálogo con el sistema y la calidad de las preguntas tienen valor formativo en sí mismos. El núcleo de la conferencia es la propuesta de tres escenarios de uso de la IA en educación. El primero, apoyo responsable, se centra en el uso de la IA por parte del profesorado como herramienta de preparación y apoyo (generar materiales, reformular explicaciones, diseñar actividades) con bajo riesgo si se mantiene la agencia docente, se respeta la privacidad y se declara el uso. El segundo, colaboración guiada, incorpora la IA como parte de las actividades del estudiantado, pero con una fuerte guía del profesorado, énfasis en la evaluación auténtica y prioridad al proceso (versiones, iteraciones, trabajo en clase) frente al producto final. El tercero, cocreación con declaración de uso reforzada, contempla un uso más autónomo de la IA por parte del estudiantado en productos de alto impacto (TFG/TFM, recursos abiertos), con riesgos mayores que se compensan exigiendo trazabilidad completa, transparencia, equidad en el acceso y revisión rigurosa. En las conclusiones, se destaca que, tres años después de la irrupción de ChatGPT, el profesorado sigue polarizado entre la tecnofobia y la tecnofilia. Muchos problemas que hoy se achacan a la IA (desigualdades, evaluación basada en la memorización, desajuste entre tareas y competencias) ya existían antes, pero la IA los amplifica y visibiliza. Prohibir sin más no resuelve estas tensiones; el reto es comprender qué aporta realmente a la enseñanza, al aprendizaje y a la investigación, y ponerla al servicio de un aprendizaje más profundo. Finalmente, se subraya la importancia de formar tanto al profesorado como al estudiantado en el uso crítico de la IA, promover comunidades de práctica y compartir buenas experiencias. La IA no es buena ni mala, ni neutral: su impacto dependerá de cómo la diseñemos, la gobernemos y la usemos en los contextos educativos reales.
  • Thumbnail Image
    Item
    Escritura científica. Buenas prácticas para publicar en revistas
    (Grupo GRIAL, 2025-11-18) García-Peñalvo, Francisco José
    Curso de formación del PDI de la Universitat de les Illes Balears, Programa de Formación del PDI 2025-26, de 4 horas síncronas de formación impartidas de forma online los días 18 y 26 de noviembre de 2025. Este curso es una guía práctica y estratégica para la publicación en revistas científicas, no solo como meta académica, sino como una herramienta para lograr visibilidad, reconocimiento y posicionamiento dentro de la comunidad científica global. Las competencias en investigación que se adquirirán están relacionadas con: • Ciencia abierta y gestión de datos de investigación. • Publicación de investigaciones y estrategias para aumentar el impacto de las publicaciones. • Ética en la investigación y prevención de sesgos. Los contenidos del curso se organizan en los siguientes epígrafes: 1. Ecosistema editorial internacional. 2. Guía práctica y estratégica para afrontar una publicación científica. 3. Inteligencia artificial en la escritura científica. 4. Aspectos éticos. 5. Conclusiones. En el ecosistema editorial se subraya que la escritura de artículos es el canal central de comunicación científica y que hacerlo bien beneficia a investigadores, instituciones y sociedad. Se conecta con la tercera misión universitaria y con la Ciencia Abierta como marco que exige identidad digital y apertura del conocimiento. La base normativa y de política científica refuerza esta orientación: la EECTI 2021-2027, la Ley 17/2022 y la LOSU (art. 12) impulsan el depósito en abierto de resultados, situando los repositorios institucionales en el centro; además, se explican rutas verde, dorada y diamante del acceso abierto, y se advierte sobre derechos de autor y políticas editoriales (Sherpa/RoMEO, Dulcinea). La guía práctica arranca antes de escribir: planificar preguntas, diseño experimental, registros y verificación de resultados; escribir claro en un contexto de “sobredosis de información”. Se aconseja prosa sencilla, evitar jerga, y que cada elemento (sección, figura, tabla) sea comprensible por sí mismo. Se piden acuerdos de autoría explícitos y transparentes: solo quien contribuye firma, todos responden por el contenido, y se recomienda usar la taxonomía CRediT para declarar contribuciones. Se recuerda que autores honorarios y autoría fantasma son prácticas indebidas. Sobre el ecosistema de escritura, se sugiere definir plataforma y flujo de trabajo colaborativo con control de versiones, gestor bibliográfico (p. ej., Zotero/EndNote), y un cronograma claro. El borrador se organiza siguiendo IMRaD y un orden de redacción eficiente. Se detallan criterios para título, introducción, métodos, resultados y discusión; además, se dan pautas para conclusiones (no introducir información nueva), agradecimientos, y para un resumen eficaz (200-300 palabras) y palabras clave pertinentes. También se subraya el cuidado en citas y referencias, cumpliendo estrictamente el estilo de la revista. En IA generativa, se enfatiza el uso ético, la transparencia y la declaración de su empleo más allá de la ayuda estilística o de traducción. Se advierte del “plagio por IA” y del riesgo de alucinaciones (incluida la fabricación de citas). El bloque ético aborda la mala conducta científica: plagio y autoplagio, fabricación y falsificación de datos, con consecuencias graves (rechazos y retractaciones). Se invita a una práctica responsable, veraz y transparente. Finalmente, se ofrecen criterios de selección de revistas y una estrategia de envío, en un contexto donde las evaluaciones se desplazan del “medio” al mérito de la aportación.
  • Thumbnail Image
    Item
    AI in the Research Lifecycle
    (GRIAL Research Group, 2025-10-21) García-Peñalvo, Francisco José; Vázquez-Ingelmo, Andrea
    The Workshop on AI in the Research Lifecycle was held on October 21, 2025, at the 13th Technological Ecosystems for Enhancing Multiculturality (TEEM) conference, which took place at the Research Institute for Educational Sciences (IUCE) of the Universidad de Salamanca from October 21 to 24, 2025, and lasted one hour. AI in the Research Lifecycle offers a critical, practice-oriented tour of how generative AI (GenAI) can responsibly augment research from ideation to dissemination. The session begins by situating GenAI as the branch of AI driving today’s disruption and clarifies why its everyday integration represents a qualitative inflection point for knowledge work. It then sets a clear objective: to foster ethical, well-informed, and productive research practices when deploying GenAI. A unifying framework maps GenAI support to each stage of the research cycle (idea formation, proposal writing, state-of-the-art reviews, data collection, coding and analysis, reporting, publishing, and communication) while emphasizing that prompt quality and contextual grounding are decisive for output quality (illustrated by the prompt–context–response schema). Concrete exemplars show how to: 1) brainstorm and structure objectives and hypotheses; 2) interrogate papers with targeted questions; 3) run “deep research” workflows for evidence-bound drafts; 4) convert and manage references (APA/BibTeX); 5) analyze public datasets with transparent code; and 6) generate outreach artifacts such as spotlights, slides, and infographics. The deck also inventories current multimodal tools (text, audio, image, video) and introduces practical pipelines, for instance, transforming recorded interviews into analyzable text and word-cloud summaries with GenAI assistance. Ethics and transparency are treated as first-class concerns rather than afterthoughts. The talk operationalizes four principles for responsible use: Reliability, Honesty, Respect, and Accountability, and aligns them with actionable practices, such as, disclose tool use and methods; verify and reproduce claims; protect privacy and intellectual property; and maintain human agency and oversight. In literature workflows, the session recommends pairing general LLMs (for example, ChatGPT) with research-oriented tools (for example, Elicit, Consensus, SciSpace), while insisting on critical appraisal: do not accept outputs without checking consistency against the best available evidence, apply informal and formal logic, and verify compatibility with prior knowledge. The conclusions balance opportunity and caution. GenAI demonstrably increases efficiency and expands the researcher’s toolkit, yet current limitations, especially around data and provenance traceability, demand measured adoption, explicit acknowledgments, and rigorous review. Used wisely, GenAI automates the repetitive and accelerates exploration, freeing researchers to focus on creativity, judgment, and intellectual autonomy, without displacing the essential human capacities that make research scientific.
  • Thumbnail Image
    Item
    Enseñanza con IA Generativa: Desafíos en Salud e Ingeniería
    (Grupo GRIAL, 2025-09-05) García-Peñalvo, Francisco José
    Seminario de 2 horas de duración impartido en el Salón de Actos de la Facultad de Ciencias de la Salud de la Universidad de Burgos el viernes 5 de septiembre de 2025, organizado por el GIR DATAHES, UIC JCYL N.º 348 y GID B-LCS. Los objetivos específicos del seminario son: 1. Concienciar sobre el uso ético y responsable de la IA generativa en contextos educativos, especialmente en áreas sensibles como la salud y la ingeniería. 2. Presentar el marco del AI Safe in Education Manifesto y otros referentes internacionales como base de buenas prácticas en la docencia. 3. Explorar herramientas de IA generativa actuales y mapear actividades docentes donde profesores y estudiantes puedan integrarlas de manera segura y productiva. 4. Fomentar el debate crítico y reflexivo entre docentes y estudiantes para identificar riesgos, oportunidades y estrategias de implementación responsable. Se propone una hoja de ruta práctica para un uso responsable y eficaz de la IAGen en educación superior. Parte de una alfabetización crítica: qué es la IAGen, cómo funciona (modelos, datos y límites), cuáles son sus riesgos (sesgos, alucinaciones, dependencia) y qué significa evaluar calidad y trazar responsabilidad humana. Introduce técnicas de prompting y el patrón de “deep research” para fundamentar contenidos y decisiones docentes. En el eje normativo-ético, se sintetizan las directrices de la UNESCO (visión humanocéntrica, capacidad institucional y desarrollo docente), el marco regulatorio europeo (EU AI Act, enfoque basado en riesgos y obligaciones de transparencia y documentación) y el marco SAFE de EDSAFE AI (Seguridad, Accountability, Equidad, Eficacia), además del Safe AI in Education Manifesto como guía de principios operativos y compromiso institucional. Estas referencias sirven para alinear políticas de centro, prácticas de aula y diseño de materiales con estándares internacionales y obligaciones legales. El “mapa de actividades” organiza usos de IAGen por fases del ciclo docente: 1) planificación (análisis de resultados de aprendizaje, detección de riesgos y datos necesarios); 2) creación de materiales (guiones de clase, casos, cuestionarios, visualizaciones con trazabilidad y citación de fuentes); 3) apoyo al aprendizaje (tutoría guiada por rúbricas, andamiaje y metacognición); 4) evaluación auténtica (diseños que preservan agencia humana, criterios de divulgación y registro del uso de IA). Se acompañan catálogos de herramientas actuales (LLM generalistas, verificadores y buscadores académicos, copilotos de código, generadores de imágenes con C2PA, gestores de referencias) y pautas de adopción segura.
  • Thumbnail Image
    Item
    Transformando lo público: IA y gestión administrativa del siglo XXI
    (Grupo GRIAL, 2025-07-24) García-Peñalvo, Francisco José
    La conferencia “Transformando lo público: IA y gestión administrativa del siglo XXI” se impartió en el 24 de julio de 2025 dentro del Curso de Verano “Aplicaciones y desafíos de la inteligencia artificial en el ámbito público” de la Universidad de Burgos, celebrado del 23 al 25 de julio de 2025. La inteligencia artificial (IA) está transformando de forma acelerada la manera en que se organiza y gestiona la Administración pública. Esta conferencia ofrece una panorámica sobre cómo la IA generativa, especialmente, está posicionándose en el centro de los procesos de transformación digital del sector público. En primer lugar, se contextualiza la evolución de la IA desde sus etapas pre-generativas, basadas en modelos estadísticos y algoritmos clásicos, hasta el auge de los modelos generativos actuales, capaces de razonar, generar texto, código o imágenes, y asistir en tareas complejas. Se destacan tres fases clave: el auge de los modelos de lenguaje (2022–2023), la incorporación de capacidades de razonamiento multimodal (2024), y la irrupción de los sistemas agénticos (2025), capaces de actuar de forma casi autónoma con mínima intervención humana. La charla pone el foco en cómo estas tecnologías afectan específicamente al sector público. La automatización de tareas burocráticas, como el procesamiento de expedientes o la redacción de documentos, ya es una realidad en ámbitos como la sanidad o la gestión administrativa, liberando tiempo para tareas de mayor valor humano como el diagnóstico clínico o la atención ciudadana personalizada. Sin embargo, el impacto de la IA no es neutral. Se señalan riesgos como la pérdida de autoría, el uso inadecuado, la dependencia tecnológica, los sesgos, o la inequidad en el acceso. Por ello, se subraya la necesidad de una gobernanza de la IA que equilibre la innovación con principios como la legalidad, la transparencia, la neutralidad y la promoción del interés público. Se presenta una matriz de gobernanza que cruza estos principios con las fases de generación del conocimiento (datos, algoritmos, usos), basada en normativas como el GDPR y el AI Act. La conferencia concluye con una llamada a la formación especializada del personal público. Aunque la IA generativa parece accesible, su aprovechamiento real requiere competencias éticas, dominio conceptual y conocimiento de herramientas. Sin una preparación adecuada, la tecnología puede convertirse en una fuente de errores, dependencia o frustración. En definitiva, se propone ver la IA no como una amenaza, sino como una herramienta estratégica para mejorar la eficiencia, la equidad y la calidad del servicio público en el siglo XXI, siempre que se utilice con inteligencia, responsabilidad y visión a largo plazo.
Los contenidos de esta colección están sujetos a una licencia Creative Commons salvo que se especifique lo contrario.