DSpace 9

DSpace is the world leading open source repository platform that enables organisations to:

  • easily ingest documents, audio, video, datasets and their corresponding Dublin Core metadata
  • open up this content to local and global audiences, thanks to the OAI-PMH interface and Google Scholar optimizations
  • issue permanent urls and trustworthy identifiers, including optional integrations with handle.net and DataCite DOI

Join an international community of leading institutions using DSpace.

The test user accounts below have their password set to the name of this software in lowercase.

  • Demo Site Administrator = dspacedemo+admin@gmail.com
  • Demo Community Administrator = dspacedemo+commadmin@gmail.com
  • Demo Collection Administrator = dspacedemo+colladmin@gmail.com
  • Demo Submitter = dspacedemo+submit@gmail.com
Photo by @inspiredimages
 

Communities in DSpace

Select a community to browse its collections.

Now showing 1 - 5 of 26

Recent Submissions

Item
Inteligencia Artificial Generativa y su influencia en los procesos educativos
(Grupo GRIAL, 2025-12-03) García-Peñalvo, Francisco José
Clase magistral y taller de inteligencia artificial generativa (IAGen) impartidos en el contexto de la Unidad I: Gestión de la Tecnología y del Conocimiento, de la asignatura Diseño y Evaluación de Recursos Informáticos del Máster Universitario en las TIC en la Educación: Análisis y Diseño de Procesos, Recursos y Prácticas Formativas, el día 3 de diciembre de 2025 en la Facultad de Educación, Universidad de Salamanca. La inteligencia artificial generativa, con ChatGPT como emblema, está transformando la educación y, en particular, los procesos de enseñanza, aprendizaje e investigación en la universidad. A la hora de construir un relato sobre su uso en la academia, es importante no limitarse a describir herramientas, sino que se debe construir un marco conceptual, ético y normativo para decidir cómo usarlas, con qué fines y en qué condiciones, proponiendo una hoja de ruta razonada para el profesorado. El punto de partida es la constatación de que la inteligencia artificial (IA) ya forma parte del ecosistema educativo. Hoy la IA puede ser simultáneamente objeto de estudio, herramienta de aprendizaje y entorno en el que se aprende. Se diferencia entre aprender sobre la IA (comprender sus fundamentos, límites y sesgos), aprender con la IA (usar sistemas de recomendación, analítica de aprendizaje o tutores inteligentes para mejorar la docencia) y aprender a través de la IA, cuando esta se convierte en medio principal de acceso al conocimiento, como ocurre con los tutores adaptativos o los asistentes personales avanzados. Este contexto se enmarca en iniciativas internacionales como el Consenso de Beijing sobre IA y educación, que insiste en planificar la IA en las políticas educativas, apoyar a la docencia, favorecer el aprendizaje a lo largo de la vida y promover un uso equitativo, ético y transparente de los datos y algoritmos. La idea clave es que la IA no es un añadido accesorio, sino un factor estructural que condiciona la manera de aprender, trabajar y participar en la sociedad. A partir de ahí, el material introduce de forma accesible la irrupción de la IAGen. subraya que ya es posible generar automáticamente contenido educativo en múltiples formatos (texto, imagen, vídeo, audio, presentaciones) con calidad suficiente para ser usado como material docente o como producto de tareas académicas, muchas veces sin que sea viable detectar con certeza su origen. Esto abre oportunidades, pero también tensiona los modelos de evaluación, la autoría y la integridad académica. Se alerta además frente a los mitos y exageraciones asociados a la IA, tanto los catastrofistas como los excesivamente optimistas, que alimentan un solucionismo tecnológico ajeno a los matices de la práctica educativa real. Uno de los hilos conductores es el dilema de Prometeo. Ante una tecnología poderosa, opaca y propensa a alucinaciones, ¿la respuesta educativa debe ser prohibir su uso o aprender a integrarla críticamente? El recurso insiste en que la prohibición es una falsa solución, porque el estudiantado ya utiliza estas herramientas en todos los niveles educativos. La cuestión relevante no es tanto si se usarán, sino cómo lograr que su uso contribuya a un aprendizaje más profundo y honesto. En este marco se analizan las oportunidades y retos de la IAGen en la universidad. Para el profesorado, los beneficios potenciales incluyen el enriquecimiento del contenido educativo, el apoyo a la creatividad y la productividad, la mejora de la evaluación y la posibilidad de personalizar el aprendizaje del alumnado, además de favorecer su propia competencia digital. El reverso de la moneda son riesgos como el recelo ante el uso estudiantil de la IA, la sobrevaloración de sus capacidades, su utilización inadecuada, la dependencia tecnológica, la pérdida de autoría, la despersonalización de la relación pedagógica y las amenazas a la privacidad. En el caso del estudiantado, se señalan potenciales impactos positivos en el pensamiento crítico y la creatividad, el prototipado de ideas, el aprendizaje personalizado, la productividad y el desarrollo de competencias digitales. Pero también se advierte del peligro de un aprendizaje superficial, el uso deshonesto, la falta de capacidad para curar la información, la pérdida de pensamiento crítico, la despersonalización y las brechas de acceso entre quienes pueden usar estas herramientas en buenas condiciones y quienes no. Algo similar ocurre con la investigación: la IAGen puede acelerar procesos, automatizar tareas rutinarias y abrir vías de innovación, pero también plantear problemas de alucinaciones no detectadas, debates éticos, falta de curación del contenido, sesgos y vulneraciones de privacidad. Para ordenar esta discusión, el recurso dedica una parte importante a los marcos normativos y éticos que orientan el uso responsable de la IA. Se presentan las orientaciones de la UNESCO sobre IA y educación, que priorizan los derechos humanos, la inclusión y el desarrollo sostenible, y la necesidad de alfabetizar en IA tanto a profesorado como a estudiantes, diseñar experiencias centradas en la persona y fortalecer la capacidad institucional. Se resume el AI Act de la Unión Europea, una regulación basada en el riesgo que establece categorías de sistemas, obligaciones de transparencia y seguridad y, muy especialmente, el artículo 50 sobre el marcado del contenido generado por IA, que obliga a identificar los materiales sintéticos. Junto a ello se describe el marco SAFE, que organiza la reflexión en torno a cuatro principios: seguridad (Safety), responsabilidad (Accountability), justicia (Fairness) y eficacia (Efficacy), con especial atención a la coherencia con los principios éticos en educación y al diseño de actividades que garanticen estos criterios. Finalmente se presenta el Safe AI in Education Manifesto, que defiende que la IA en educación debe estar siempre al servicio de las personas y de los fines formativos, subrayando principios como la agencia del estudiantado, la verificación de la información, la inclusión, la transparencia, el derecho de apelación y la necesidad de explicitar cómo se usan los datos y las fuentes. Un apartado especialmente relevante es el dedicado a las tres grandes formas de integrar la IA en educación, formuladas como escenarios graduados por autonomía, agencia y riesgo. En el primero, el profesorado usa herramientas de IA como apoyo a su trabajo (por ejemplo, para preparar materiales, diseñar rúbricas o generar ejemplos). En el segundo, el profesorado incorpora esas herramientas en actividades con el estudiantado, lo que exige una alfabetización elevada en ambos colectivos y una definición clara de qué herramientas son aceptables, con qué usos y cómo debe declararse su empleo. En el tercero, el estudiantado utiliza por su cuenta herramientas de IA para aprender, lo que aumenta el riesgo y hace aún más necesaria la competencia digital y la capacidad de mantener la agencia sobre el propio aprendizaje. En todos los escenarios se enfatizan principios comunes: transparencia (declarar en qué procesos se usa la IA), evaluación auténtica centrada en el proceso y apoyada en evidencias (trabajo en clase, entregas incrementales, diarios o cuadernos de laboratorio) en lugar de confiar ciegamente en detectores de texto generado, equidad (garantizar que todo el estudiantado pueda realizar las tareas aunque no disponga de las mismas herramientas) y protección de la privacidad, especialmente en lo relativo a datos clínicos u otros datos sensibles. La presentación aterriza estos principios en una serie de roles y aplicaciones concretas de la IAGen en educación. Se describen, por ejemplo, funciones como la de “compañero de estudios” que ayuda al alumnado a reflexionar y preparar tareas; la de “motivador” que propone retos y actividades para ampliar el aprendizaje; o la de “evaluador dinámico” capaz de perfilar el conocimiento actual de cada estudiante y generar herramientas de autoevaluación, siempre que se mantenga el control humano y se diseñen estrategias claras de uso. Otras aplicaciones incluyen la generación de cuestionarios, rúbricas, explicaciones adaptadas al nivel del estudiante, guías de estudio, ejemplos de buena práctica o estímulos para el debate crítico. Todo esto lleva a la idea de alfabetización crítica en IA generativa. No basta con saber usar herramientas, sino que hay que usarlas con juicio, integrándolas en valores y prácticas académicas sólidas. Se ofrecen pautas para el reconocimiento explícito del uso de IAGen en trabajos académicos: explicar qué herramientas se han utilizado y con qué objetivos, indicar el número de iteraciones, describir los resultados incorporados, detallar las instrucciones empleadas y explicar cómo se ha integrado el output en el producto final. Esta práctica enlaza con las exigencias del AI Act y con la cultura de transparencia que promueven las universidades. Se presentan casos de uso detallados, donde se muestran flujos de trabajo que integran IAGen para ampliar contenidos, sintetizar bibliografía, analizar transcripciones de audio con herramientas como otter.ai, elaborar nubes de palabras o realizar investigación en profundidad mediante agentes que combinan razonamiento y búsqueda en múltiples fuentes. Estos casos están pensados para ilustrar cómo se pueden diseñar actividades que aprovechen las capacidades de la IA sin delegar en ella el juicio académico ni la responsabilidad última sobre el aprendizaje. Se reconoce que la IA amplifica problemas ya existentes en el sistema educativo, como la la superficialidad del aprendizaje, las desigualdades de acceso o la presión por la productividad, pero también que abre oportunidades sin precedentes para experimentar con nuevas formas de enseñar y aprender. Lejos de la retórica apocalíptica o ingenuamente entusiasta, se propone evitar que la ilusión eclipse la preocupación, pero también que la preocupación neutralice la ilusión. El salto vivido con ChatGPT y otras herramientas exige estudiar, diseñar, experimentar y evaluar sin descanso, con prudencia, pero con audacia, descartando la idea de que la tecnología vaya a arruinar por sí misma la educación. Se trata de ofrecer una visión panorámica y crítica de la IA generativa en educación. Se sitúan las herramientas en su contexto tecnológico e histórico, se exponen sus beneficios y riesgos para los distintos actores, se introducen los principales marcos éticos y normativos, se proponen escenarios operativos para su integración en la práctica docente y se ofrecen ejemplos concretos de uso responsable. Todo ello converge en un mensaje central, la IAGen no es un fin en sí mismo, sino un conjunto de instrumentos que, gestionados con criterio pedagógico, sentido ético y conocimiento del marco regulatorio, pueden contribuir a una educación más personalizada, inclusiva y orientada al desarrollo de competencias para la vida en la era de la IA.
Item
Laboratorios de innovación social para la construcción social del conocimiento: prácticas de innovación abierta
(Programa de Doctorado Formación en la Sociedad del Conocimiento, 2025-12-01) Yañez-Figueroa, José Antonio
Este estudio aborda el papel de los Laboratorios de Innovación Social (LIS) como espacios clave para la construcción social del conocimiento (CSC) y la cocreación de soluciones innovadoras ante desafíos sociales complejos. Estos entornos facilitan la colaboración multisectorial, promoviendo la implementación de innovación social sostenible y escalable, lo cual optimiza su impacto social y ético en distintos contextos. Desde el marco teórico, el trabajo se sustenta en el modelo de la Cuádruple Hélice, que integra academia, gobierno, sector privado y la sociedad civil, fomentando una interacción dinámica y colaborativa. Además, se apoya en los principios de la Innovación Abierta, que fomenta el intercambio de conocimientos y recursos para potenciar soluciones creativas y participativas en los LIS. En cuanto a la metodología, el estudio emplea un enfoque mixto que combina técnicas cualitativas y cuantitativas para una comprensión integral del fenómeno. La herramienta principal es el instrumento K-Social-C, diseñado para evaluar la sostenibilidad, efectividad, y potencial de escalabilidad de los LIS, permitiendo un análisis riguroso del impacto social generado. Los resultados más relevantes muestran que la diversidad de actores en la Cuádruple Hélice favorece la cocreación, evidenciando una considerable efectividad en la generación de soluciones sostenibles y adaptables, y presentando un alto potencial para la escalabilidad. La sostenibilidad de estos laboratorios se vincula con la participación activa y la capacidad de adaptar sus procesos a contextos diversos, consolidando su impacto a largo plazo. Finalmente, la principal conclusión destaca la necesidad de fortalecer estos espacios mediante políticas públicas que impulsen su formalización y expansión. Como estudio futuro, se propone investigar la integración de tecnologías digitales para potenciar aún más la colaboración y el alcance de los LIS en distintas comunidades.
Thumbnail Image
Item
Agile change approach for collaborative software development contexts: A systematic literature review
(Elsevier, 2025-11-25) González-Blázquez, José Luis; García-Holgado, Alicia; García-Peñalvo, Francisco José
This systematic literature review examines how agile solutions can drive organizational change in collaborative open-source software (OSS) contexts. Motivated by persistent challenges in governance, alignment, contribution lifecycles, workflow, leadership, and measurement, the review asks which prescriptive and non-prescriptive agile approaches are being applied when organizations collaborate with OSS communities, and how these approaches mitigate those issues. The study first conducts an umbrella review (2000–2024) to confirm the gap and scope, then performs a main systematic review across digital libraries using inclusion, exclusion, and quality criteria. The synthesis maps findings to a conceptual framework of nine problem areas and two change paths. Results show a dominance of prescriptive methods, especially Scrum, LeSS, SAFe, and Kanban, for workflow trans-parency, dependency management, and coordination, while governance and leadership models remain under-explored. Building on this evidence, the paper proposes: (1) a prescriptive change approach for low-maturity organizations that integrates holacratic governance with Scrum/LeSS, Communities of Practice, Design Thinking for innovation, Management 3.0 leadership, and KPI-oriented cultures; and (2) a non-prescriptive approach for mature organizations based on unFIX’s fractal organizational design, forums and collaboration patterns, dele-gation levels, and outcome-focused metrics to extend co-evolution with communities. The dual pathway enables organizations to select and sequence interventions that align with their paradigm and maturity, thereby bridging organizational and community boundaries to foster sustained agility. The review highlights open research needs on governance mechanisms, leadership in symbiotic ecosystems, and empirical evaluations of combined scaling approaches beyond SAFe, as well as longitudinal studies on alignment, dependency management, and mea-surement cultures in high-variability OSS environments.
Thumbnail Image
Item
Inteligencia artificial generativa y autonomía educativa: metáforas históricas y principios éticos para la transformación pedagógica
(2026-01-01) Alier-Forment, Marc; Casañ-Guerrero, María José; Pereira-Varela, Juan Antonio; García-Peñalvo, Francisco José; Llorens-Largo, Faraón
Este artículo analiza la integración de la inteligencia artificial generativa en educación desde una perspectiva crítica, histórica y ética. Se identifica una creciente preocupación por la opacidad de las herramientas de inteligencia artificial actuales, especialmente en sistemas de aprendizaje. El trabajo utiliza un enfoque basado en metáforas para entender cómo las narrativas tecnológicas influyen en la adopción de innovaciones educativas. Se revisan metáforas históricas en las tecnologías aplicadas a la educación, desde Multivac y Matrix hasta el Bazar del software libre y la App Store, y se proponen nuevas imágenes conceptuales que podrían aplicarse al contexto actual en el que la inteligencia artificial irrumpe en la educación. A partir de este análisis metafórico, se plantean siete principios éticos para una adopción segura de la inteligencia artificial generativa en educación, centrados en la privacidad, la alineación pedagógica, la supervisión humana y la transparencia tecnológica. Estos principios se ejemplifican con el entorno LAMB (Learning Assistant Manager and Builder), un marco de código abierto que permite diseñar asistentes de aprendizaje basados en inteligencia artificial de forma ética y contextualizada. Se presentan casos reales de aplicación de LAMB en educación superior, incluyendo una experiencia controlada con estudiantes que muestran mejoras significativas en autonomía y coherencia pedagógica. Finalmente, se destaca cómo LAMB encarna los principios éticos propuestos y responde a las metáforas críticas identificadas, ofreciendo un modelo de integración tecnológica centrado en la autonomía de los docentes, la alineación con los principios y prácticas de la institución educativa y el aprendizaje significativo de los estudiantes.
Thumbnail Image
Item
Generative artificial intelligence and educational autonomy: historical metaphors and ethical principles for pedagogical transformation
(2026-01-01) Alier-Forment, Marc; Casañ-Guerrero, María José; Pereira-Varela, Juan Antonio; García-Peñalvo, Francisco José; Llorens-Largo, Faraón
This article examines the integration of generative artificial intelligence in education from a critical, historical, and ethical perspective. It highlights growing concerns about the opacity of current artificial intelligence tools, particularly in learning systems. The study adopts a metaphor-based approach to explore how technological narratives influence the adoption of educational innovations. It reviews historical metaphors used to describe educational technologies, from Multivac and Matrix to the free software Bazaar and the App Store, and proposes new conceptual frameworks that may better reflect the current context in which artificial intelligence is entering the educational sphere. Based on this metaphorical analysis, the article outlines seven fundamental ethical principles for the safe adoption of generative artificial intelligence in education, focusing on privacy, pedagogical alignment, human oversight, and technological transparency. These principles are illustrated through a practical application: the LAMB (Learning Assistant Manager and Builder) environment, an open-source software framework that enables the ethical and contextualized design of artificial intelligence-based learning assistants. The article presents real-world cases of LAMB implementation in higher education, including a controlled experience with students that demonstrates significant improvements in student autonomy and pedagogical coherence. Finally, it emphasizes how LAMB embodies the proposed ethical principles and responds to the identified critical metaphors, offering a model for technology integration centered on teacher autonomy, alignment with institutional values and practices, and meaningful student learning that prioritizes pedagogical control over technological determinism.