DSpace 9
DSpace is the world leading open source repository platform that enables organisations to:
- easily ingest documents, audio, video, datasets and their corresponding Dublin Core metadata
- open up this content to local and global audiences, thanks to the OAI-PMH interface and Google Scholar optimizations
- issue permanent urls and trustworthy identifiers, including optional integrations with handle.net and DataCite DOI
Join an international community of leading institutions using DSpace.
The test user accounts below have their password set to the name of this software in lowercase.
- Demo Site Administrator = dspacedemo+admin@gmail.com
- Demo Community Administrator = dspacedemo+commadmin@gmail.com
- Demo Collection Administrator = dspacedemo+colladmin@gmail.com
- Demo Submitter = dspacedemo+submit@gmail.com
Communities in DSpace
Select a community to browse its collections.
- W-STEM
- Supporting Culturally Responsive Leadership and Evaluation in Schools
- A Digital Ecosystem Framework for an Interoperable NEtwork-based Society (DEFINES)
- Evaluation environment for fostering intercultural mentoring tools and practices at school
Recent Submissions
Elaboración de políticas de apoyo de Educación y Ciencia y Abierta
(Grupo GRIAL, 2025-01-21) García-Peñalvo, Francisco José
Conferencia impartida el 21 de enero de 2025 en la Estancia Internacional organizada por la Cátedra UNESCO Movimiento Educativo Abierto para América Latina 2025 y que se desarrolla entre el 20 y el 31 de enero de 2025 en el Tecnológico de Monterrey (México).
El objetivo de esta conferencia es presentar la importancia de las políticas de conocimiento abierto orientadas al apoyo y desarrollo, fundamentalmente, de la Educación Abierta y de la Ciencia Abierta.
Filling the gap in K-12 data literacy competence assessment: Design and initial validation of a questionnaire
(Elsevier, 2025-03-01) Donate-Beby, Belén; García-Peñalvo, Francisco José; Amo-Filva, Daniel; Aguayo-Mauri, Sofía
As the integration of AI-powered technologies in education grows, data literacy has become a key competence for educators, shaping their ability to navigate and utilize vast amounts of educational data. This study details the development of the Educators Data Literacy Self-Assessment (EDLSA), a questionnaire designed to assess perceived data literacy among K-12 teachers, focusing on its behavioural implications. The development of the EDLSA was rigorous. It involved an exhaustive qualitative review of frameworks and a pilot test in a teachers' Spanish sample (n = 66) provided relevant insights for refining the instrument. Finally, we conducted a comprehensive statistical analysis, which confirmed the instrument's robust reliability (α = 0.976) in measuring teachers' data management competence. The results of the factorial analysis in piloting primary and secondary education samples led to the readjustment of the proposed dimensions into three categories: comprehensive educational analytics, educational problem-solving through data, and promoting meta-learning students through data and ethical implications. Stemmed from the assessed competencies, the EDLSA instrument provides a comprehensive understanding of the human-computer interaction over data in educational settings. Overall, this self-assessment tool presents robust psychometric properties and a framework definition that paves the way for further development among teachers and researchers.
Asistentes de aprendizaje basados en inteligencia artificial: Principios de seguridad y experiencias de implementación en educación superior
(Dykinson, 2024-12-30) Casañ, M. J.; Alier, M.; Pereira, J.; García-Peñalvo, F. J.
El capítulo presenta el impacto y las aplicaciones de la Inteligencia Artificial Generativa (IAGen) en educación superior, centrándose en principios de seguridad y experiencias prácticas. Desde finales de 2022, herramientas como ChatGPT y Dall-E han revolucionado los métodos de enseñanza, promoviendo la personalización del aprendizaje y la automatización de procesos educativos. Sin embargo, estas tecnologías también plantean desafíos, como la privacidad de datos, las "alucinaciones" en las respuestas de los modelos, los sesgos inherentes y la dependencia tecnológica.
Para garantizar una implementación segura y ética de la IAGen, los autores proponen siete principios clave: confidencialidad, alineación con estrategias educativas, prácticas didácticas, precisión, comprensión, supervisión humana y entrenamiento ético. Estos principios buscan integrar herramientas de IA de manera alineada con los valores institucionales y las normativas de privacidad.
El capítulo también introduce LAMB (Learning Assistant Manager and Builder), un marco de software diseñado para crear asistentes de aprendizaje seguros y personalizados. Estos asistentes, interoperables con sistemas como Moodle, emplean recuperación aumentada por generación (RAG) para combinar datos específicos con la capacidad de los modelos de lenguaje. Un ejemplo práctico de LAMB se ilustra en un curso de negocios donde se utilizó un asistente para realizar análisis PESTLE y DAFO, mostrando una recepción positiva por parte de los estudiantes.
Finalmente, se concluye que integrar la IAGen en la educación no solo debe enfocarse en su potencial innovador, sino en asegurar una aplicación ética y responsable, alineada con los objetivos educativos. Herramientas como LAMB ejemplifican cómo la IA puede ser una pieza valiosa y segura en los ecosistemas educativos.
Safe AI in Education Manifesto. Version 0.4.0
(2024-10-08) Alier-Forment, Marc; García-Peñalvo, Francisco José; Casañ, María José; Pereira, Juanan; Llorens-Largo, Faraón
The Safe AI in Education Manifesto outlines ethical principles for integrating AI into educational environments. It emphasizes the need for human oversight, ensuring AI complements rather than replaces educators. Decision-making must remain transparent and appealable, protecting the educational process's integrity. Confidentiality is paramount; institutions must safeguard student data and ensure AI systems comply with stringent privacy standards. AI tools should align with educational strategies, supporting learning objectives without enabling unethical practices or adding complexity.
The manifesto calls for AI systems to respect didactic practices, adapting seamlessly to instructional designs without burdening educators or students. It stresses accuracy and explainability, requiring AI outputs to be reliable, transparent, and verifiable. Interfaces must be intuitive, communicating their limitations to foster trust and critical engagement.
Ethical training and transparency in AI model development are essential, including minimizing biases and disclosing data sources. The manifesto commits to advancing AI’s potential in education while prioritizing privacy, fairness, and educational integrity, providing a living framework adaptable to technological evolution.
It can be signed at: https://manifesto.safeaieducation.org/
Workshop about developing educative scenarios with GenAI tools
(Zenodo, 2024-06-12) García-Carrasco, J.
The document outlines a workshop designed for Master’s students in ICT applied to education at the University of Salamanca. Led by Francisco José García-Peñalvo, the workshop aims to explore the application of generative AI (GenAI) tools like ChatGPT in education. The objectives include learning to integrate GenAI in teaching, reflecting on its potential and risks, and designing educational scenarios collaboratively.
The eight-hour session is part of a course on "Design and Assessment of Digital Resources." Students, mostly with educational backgrounds, engage in a structured process involving an introduction, AI-focused discussions, and hands-on sessions with ChatGPT. Teams of three work to develop and present educational scenarios using GenAI. Examples of tasks include creating stories for primary school, designing gamified learning activities, or developing subject-specific assessments.
The emphasis is on the process over the final product. Teams document prompts and workflows and present findings to facilitate peer discussion on lessons learned, focusing on benefits and challenges.
Key takeaways stress the importance of an initial introduction to GenAI, collaborative work, and reflection. The workshop highlights the transformative potential of GenAI in education while advocating for critical engagement with its ethical and practical implications.