Publications
Permanent URI for this collectionhttps://repositorio.grial.eu/handle/123456789/34
Browse
2 results
Search Results
Item AI-Assisted UML Learning: Toward Ethical Integration of Generative Artificial Intelligence in Software Engineering Education(Servicio de Publicaciones Universidad de Zaragoza, 2025-06-11) Vázquez-Ingelmo, Andrea; Castillo-Salguero, Cristian Alejandro; García-Peñalvo, Francisco José; Conde, Miguel Ángel; García-Holgado, Alicia; Therón, RobertoThis paper presents a web-based chatbot platform designed to support the teaching of UML domain modeling in software engineering education. Leveraging locally executed generative AI (DeepSeek-v2), the tool provides students with anonymized, interactive feedback and problem generation capabilities while preserving data privacy and promoting ethical AI use. The platform fosters autonomy, digital literacy, and critical reflection, offering a scalable and sustainable solution for integrating AI into higher education.Item Safe AI in Education Manifesto. Version 0.4.0(2024-10-08) Alier-Forment, Marc; García-Peñalvo, Francisco José; Casañ, María José; Pereira, Juanan; Llorens-Largo, FaraónThe Safe AI in Education Manifesto outlines ethical principles for integrating AI into educational environments. It emphasizes the need for human oversight, ensuring AI complements rather than replaces educators. Decision-making must remain transparent and appealable, protecting the educational process's integrity. Confidentiality is paramount; institutions must safeguard student data and ensure AI systems comply with stringent privacy standards. AI tools should align with educational strategies, supporting learning objectives without enabling unethical practices or adding complexity. The manifesto calls for AI systems to respect didactic practices, adapting seamlessly to instructional designs without burdening educators or students. It stresses accuracy and explainability, requiring AI outputs to be reliable, transparent, and verifiable. Interfaces must be intuitive, communicating their limitations to foster trust and critical engagement. Ethical training and transparency in AI model development are essential, including minimizing biases and disclosing data sources. The manifesto commits to advancing AI’s potential in education while prioritizing privacy, fairness, and educational integrity, providing a living framework adaptable to technological evolution. It can be signed at: https://manifesto.safeaieducation.org/