Publications
Permanent URI for this collectionhttps://repositorio.grial.eu/handle/123456789/34
Browse
3 results
Search Results
Item Evaluating the Effectiveness of Human-Centered AI Systems in Education(Departamento de Informática y Automática. Universidad de Salamanca, 2024-03-01) Shoeibi, N.; Therón, R.; García-Peñalvo, F. J.This thesis examines how AI can improve human-computer interaction (HCI) and user experience in education. A systematic litera-ture review (SLR) and LATILL case study show how AI can be used in education. The SLR examines existing literature to determine how AI af-fects user experience and HCI in education, highlighting personalization and adaptability of learning experiences, improved task performance, and improved user experience for teachers and students. AI implementation in education faces obstacles. Using CEFR levels and linguistic traits, the LATILL project uses a user-centered design to give students personali-zed guidance and support. It transforms language instruction and fosters engaging and successful learning by encouraging educator collaboration and resource sharing. This study emphasizes the importance of user ex-perience and HCI principles in designing AI-driven educational systems. AI and user-centered design can improve learning, student engagement, and educational outcomes.Item Assessed by Machines: Development of a TAM-Based Tool to Measure AI-based Assessment Acceptance Among Students(2020-12-05) Sánchez-Prieto, J. C.; Cruz-Benito, J.; Therón, R.; García-Peñalvo, F. J.In recent years, the use of more and more technology in education has been a trend. The shift of traditional learning procedures into more online and tech-ish approaches has contributed to a context that can favor integrating Artificial-Intelligence-based or algorithm-based assessment of learning. Even more, with the current acceleration because of the COVID-19 pandemic, more and more learning processes are becoming online and are incorporating technologies related to automatize assessment or help instructors in the process. While we are in an initial stage of that integration, it is the moment to reflect on the students' perceptions of being assessed by a non-conscious software entity like a machine learning model or any other artificial intelligence application. As a result of the paper, we present a TAM-based model and a ready-to-use instrument based on five aspects concerning understanding technology adoption like the AI-based assessment on education. These aspects are perceived usefulness, perceived ease of use, attitude towards use, behavioral intention, and actual use. The paper's outcomes can be relevant to the research community since there is a lack of this kind of proposal in the literature.Item Connecting domain-specific features to source code: Towards the automatization of dashboard generation(2019-10-31) Vázquez-Ingelmo, A.; García-Peñalvo, F. J.; Therón, R.; Amo-Filvà, D.; Fonseca-Escudero, D.Dashboards are useful tools for generating knowledge and support decision-making processes, but the extended use of technologies and the increasingly available data asks for user-friendly tools that allow any user profile to exploit their data. Building tailored dashboards for any potential user profile would involve several resources and long development times, taking into account that dashboards can be framed in very different contexts that should be studied during the design processes to provide practical tools. This situation leads to the necessity of searching for methodologies that could accelerate these processes. The software product line paradigm is one recurrent method that can decrease the time-to-market of products by reusing generic core assets that can be tuned or configured to meet specific requirements. However, although this paradigm can solve issues regarding development times, the configuration of the dashboard is still a complex challenge; users' goals, datasets, and context must be thoroughly studied to obtain a dashboard that fulfills the users' necessities and that fosters insight delivery. This paper outlines the benefits and a potential approach to automatically configuring information dashboards by leveraging domain commonalities and code templates. The main goal is to test the functionality of a workflow that can connect external algorithms, such as artificial intelligence algorithms, to infer dashboard features and feed a generator based on the software product line paradigm