Publications
Permanent URI for this collectionhttps://repositorio.grial.eu/handle/123456789/34
Browse
2 results
Search Results
Item Privacidad, seguridad y legalidad en soluciones educativas basadas en Blockchain: Una Revisión Sistemática de la Literatura(2020-05-06) Amo Filvà, D.; Alier, M.; García-Peñalvo, F. J.; Fonseca, D.; Casañ, M. J.La Analítica del Aprendizaje (proveniente del término en inglés Learning Analytics) procesa los datos de los estudiantes, incluso los estudiantes menores de edad. El ciclo analítico consiste en recoger datos, almacenarlos durante largos períodos y utilizarlos para realizar análisis y visualizaciones. A mayor cantidad de datos, mejores resultados en el análisis. Este análisis puede ser descriptivo, predictivo e, incluso, prescriptivo, lo que implica la gestión, el tratamiento y la utilización de datos personales. El contexto educativo es, por lo tanto, muy sensible, a diferencia de los contextos individuales en los que el análisis se utiliza a voluntad. No está claro cómo están utilizando los datos de los estudiantes las empresas de tecnología que dan servicio en educación y a quiénes realmente se les beneficia, cómo esto afectará a los estudiantes en un futuro a corto y largo plazo, o qué nivel de privacidad o seguridad se aplica para proteger los datos de los estudiantes. Por consiguiente, y en relación con lo expuesto, el análisis de datos educativos implica un contexto sensible y de fragilidad en la gestión y análisis de datos personales de los estudiantes, incluidos menores, en el que hay que maximizar las precauciones. En esta revisión sistemática de la literatura se explora la importancia de la protección y seguridad de los datos personales en el campo de la educación mediante las promesas emergentes de los interesados en usar la tecnología blockchain. Los resultados denotan que es importante entender las implicaciones y riesgos derivados de usar tecnologías emergentes en educación, su relación con la sociedad y la legalidad vigenteItem Clickstream for learning analytics to assess students’ behavior with Scratch(2019-01-01) Amo Filvà, D.; Alier Forment, M.; García-Peñalvo, F. J.; Fonseca Escudero, D.; Casañ, M. J.The construction of knowledge through computational practice requires to teachers a substantial amount of time and effort to evaluate programming skills, to understand and to glimpse the evolution of the students and finally to state a quantitative judgment in learning assessment. The field of learning analytics has been a common practice in research since last years due to their great possibilities in terms of learning improvement. Both, Big and Small data techniques support the analysis cycle of learning analytics and risk of students’ failure prediction. Such possibilities can be a strong positive contribution to the field of computational practice such as programming. Our main objective was to help teachers in their assessments through to make those possibilities effective. Thus, we have developed a functional solution to categorize and understand students’ behavior in programming activities based in Scratch. Through collection and analysis of data generated by students’ clicks in Scratch, we proceed to execute both exploratory and predictive analytics to detect patterns in students’ behavior when developing solutions for assignments. We concluded that resultant taxonomy could help teachers to better support their students by giving real-time quality feedback and act before students deliver incorrectly or at least incomplete tasks.