Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcía-Peñalvo, F. J.-
dc.contributor.authorCruz-Benito, J.-
dc.contributor.authorMartín-González, M.-
dc.contributor.authorVázquez-Ingelmo, A.-
dc.contributor.authorSánchez-Prieto, J. C.-
dc.identifier.citationGarcía-Peñalvo, F. J., Cruz-Benito, J., Martín-González, M., Vázquez-Ingelmo, A., Sánchez-Prieto, J. C., & Therón, R. (2018). Proposing a machine learning approach to analyze and predict employment and its factors. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 39-45. doi:10.9781/ijimai.2018.02.002en
dc.description.abstractThis paper presents an original study with the aim of propose and test a machine learning approach to research about employability and employment. To understand how the graduates get employed, researchers propose to build predictive models using machine learning algorithms, extracting after that the most relevant factors that describe the model and employing further analysis techniques like clustering to get deeper insights. To test the proposal, is presented a case study that involves data from the Spanish Observatory for Employability and Employment (OEEU). Using data from this project (information about 3000 students), has been built predictive models that define how these students get a job after finalizing their degrees. The results obtained in this case study are very promising, and encourage authors to refine the process and validate it in further research.en
dc.subjectArtificial Intelligenceen
dc.subjectMachine Learningen
dc.subjectRandom Foresten
dc.subjectAcademic Analyticsen
dc.titleProposing a machine learning approach to analyze and predict employment and its factorsen
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
ijimai_5_2_5_pdf_12552.pdfArticle430,32 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.