GRIAL resources
Permanent URI for this communityhttps://repositorio.grial.eu/handle/123456789/1
Browse
2 results
Search Results
Item AI in the Research Lifecycle(GRIAL Research Group, 2025-10-21) García-Peñalvo, Francisco José; Vázquez-Ingelmo, AndreaThe Workshop on AI in the Research Lifecycle was held on October 21, 2025, at the 13th Technological Ecosystems for Enhancing Multiculturality (TEEM) conference, which took place at the Research Institute for Educational Sciences (IUCE) of the Universidad de Salamanca from October 21 to 24, 2025, and lasted one hour. AI in the Research Lifecycle offers a critical, practice-oriented tour of how generative AI (GenAI) can responsibly augment research from ideation to dissemination. The session begins by situating GenAI as the branch of AI driving today’s disruption and clarifies why its everyday integration represents a qualitative inflection point for knowledge work. It then sets a clear objective: to foster ethical, well-informed, and productive research practices when deploying GenAI. A unifying framework maps GenAI support to each stage of the research cycle (idea formation, proposal writing, state-of-the-art reviews, data collection, coding and analysis, reporting, publishing, and communication) while emphasizing that prompt quality and contextual grounding are decisive for output quality (illustrated by the prompt–context–response schema). Concrete exemplars show how to: 1) brainstorm and structure objectives and hypotheses; 2) interrogate papers with targeted questions; 3) run “deep research” workflows for evidence-bound drafts; 4) convert and manage references (APA/BibTeX); 5) analyze public datasets with transparent code; and 6) generate outreach artifacts such as spotlights, slides, and infographics. The deck also inventories current multimodal tools (text, audio, image, video) and introduces practical pipelines, for instance, transforming recorded interviews into analyzable text and word-cloud summaries with GenAI assistance. Ethics and transparency are treated as first-class concerns rather than afterthoughts. The talk operationalizes four principles for responsible use: Reliability, Honesty, Respect, and Accountability, and aligns them with actionable practices, such as, disclose tool use and methods; verify and reproduce claims; protect privacy and intellectual property; and maintain human agency and oversight. In literature workflows, the session recommends pairing general LLMs (for example, ChatGPT) with research-oriented tools (for example, Elicit, Consensus, SciSpace), while insisting on critical appraisal: do not accept outputs without checking consistency against the best available evidence, apply informal and formal logic, and verify compatibility with prior knowledge. The conclusions balance opportunity and caution. GenAI demonstrably increases efficiency and expands the researcher’s toolkit, yet current limitations, especially around data and provenance traceability, demand measured adoption, explicit acknowledgments, and rigorous review. Used wisely, GenAI automates the repetitive and accelerates exploration, freeing researchers to focus on creativity, judgment, and intellectual autonomy, without displacing the essential human capacities that make research scientific.Item Desarrollo de un GPT personalizado para la orientación universitaria(Grupo GRIAL, 2025-03-06) García-Peñalvo, Francisco José; Vázquez-Ingelmo, AndreaEl taller “Desarrollo de un GPT personalizado para la orientación universitaria” se impartió el 6 de marzo de 2025 en las I Jornadas de Orientación Profesional y Competencias CRUE España, celebradas en la Universidad de Salamanca. En el taller se explora cómo las tecnologías de Inteligencia Artificial Generativa (IAGen) y, en particular, los modelos GPT personalizados, pueden transformar la orientación académica en las universidades. La presentación arranca contextualizando la revolución tecnológica que ha supuesto la IAGen, destacando cómo los modelos de lenguaje a gran escala (LLM) han cambiado la producción de contenidos y la interacción con la información. Los LLM funcionan prediciendo la siguiente palabra en un contexto dado, lo que les permite generar texto coherente. Su efectividad depende de la cantidad de parámetros (pueden superar los 10.000 millones) y de la amplitud de la ventana de contexto, que define cuánta información puede considerar el modelo a la vez. Una mayor ventana permite mantener el contexto en conversaciones largas o analizar documentos extensos. El taller también presenta el “Manifiesto para una IA segura en la educación”, un conjunto de principios que garantizan el uso ético y seguro de la IA en el entorno educativo. Entre estos principios destacan la supervisión humana, la protección de la confidencialidad, la alineación con las estrategias educativas, la precisión y explicabilidad de las respuestas, y la transparencia en el comportamiento del asistente. El taller subraya la necesidad de desarrollar asistentes virtuales inteligentes adaptados a necesidades específicas, como la orientación universitaria. Un GPT personalizado no es simplemente una versión adaptada de ChatGPT, sino un asistente ajustado a un propósito concreto, que sigue instrucciones específicas, accede a información relevante y ofrece respuestas alineadas con las políticas y el contexto institucional. La diferencia clave es que ChatGPT es un generalista, mientras que un GPT personalizado es un especialista entrenado con manuales, procedimientos y documentación concreta. La personalización de un GPT implica definir su propósito, el tono de sus respuestas y el nivel de detalle. Es crucial proporcionar al modelo un conjunto de instrucciones claras y ejemplos de respuestas esperadas, además de establecer restricciones para evitar respuestas ambiguas o erróneas. Un aspecto clave es la personalización del conocimiento, cargando documentos específicos (normativas, reglamentos o guías de la universidad) que el GPT puede consultar para generar respuestas precisas. El proceso técnico de creación de un GPT personalizado en la plataforma ChatGPT de OpenAI es descrito paso a paso. OpenAI ofrece una interfaz de configuración intuitiva, donde es posible definir el comportamiento del asistente, subir documentos de conocimiento, habilitar la consulta de información en la web, e incluso conectar el GPT con API externas para realizar tareas avanzadas. Además, OpenAI recomienda redactar instrucciones de forma clara, granular y estructurada, dividiendo procesos complejos en pasos simples, utilizando ejemplos concretos y promoviendo la revisión cuidadosa de las respuestas generadas. En resumen, el taller muestra cómo los GPT personalizados pueden convertirse en herramientas clave para mejorar la orientación universitaria, ofreciendo a estudiantes y personal académico un asistente conversacional inteligente, fiable y adaptado a las necesidades de cada institución. Este enfoque combina la potencia de la IA Gen con las buenas prácticas de personalización y un fuerte compromiso con la ética y la transparencia en el uso de la IA en la educación superior.