GRIAL resources

Permanent URI for this communityhttps://repositorio.grial.eu/handle/123456789/1

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    KoopaML: Application for receiving and processing DICOM images
    (CEUR-WS.org, 2023-12-05) Fraile-Sanchón, R.; Vázquez-Ingelmo, A.; García-Holgado, A.; García-Peñalvo, F. J.
    AI algorithms application to medical data has gained relevance due to their powerful benefits among different research tasks. However, medical data is heterogeneous and diverse, and these algorithms need technological support to tackle these data management challenges. KoopaML enables users to unify medical data, especially DICOM images and apply AI algorithms to them in a straightforward way through an online web application. This work presents a new feature in the KoopaML platform: a Machine Learning platform to assist non-expert users in defining and applying ML pipelines. The feature comprises the reception, storage, and management of DICOM images. These images are received through a connection with a PACS (Picture Archiving Communication System) system already configured by users on the platform and, after storing the images, it is possible to apply AI algorithms to them and make modifications or annotations.
  • Thumbnail Image
    Item
    What Do We Mean by GenAI? A Systematic Mapping of The Evolution, Trends, and Techniques Involved in Generative AI
    (2023-08-01) García-Peñalvo, F. J.; Vázquez-Ingelmo, A.
    Artificial Intelligence has become a focal point of interest across various sectors due to its ability to generate creative and realistic outputs. A specific subset, generative artificial intelligence, has seen significant growth, particularly in late 2022. Tools like ChatGPT, Dall-E, or Midjourney have democratized access to Large Language Models, enabling the creation of human-like content. However, the concept 'Generative Artificial Intelligence' lacks a universally accepted definition, leading to potential misunderstandings. While a model that produces any output can be technically seen as generative, the Artificial Intelligent research community often reserves the term for complex models that generate high-quality, human-like material. This paper presents a literature mapping of AI-driven content generation, analyzing 631 solutions published over the last five years to better understand and characterize the Generative Artificial Intelligence landscape. Our findings suggest a dichotomy in the understanding and application of the term "Generative AI". While the broader public often interprets "Generative AI" as AI-driven creation of tangible content, the AI research community mainly discusses generative implementations with an emphasis on the models in use, without explicitly categorizing their work under the term "Generative AI".
  • Thumbnail Image
    Item
    Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform
    (2021-05-20) García-Peñalvo, F. J.; Vázquez-Ingelmo, A.; García-Holgado, A.; Sampedro-Gómez, J.; Sánchez-Puente, A.; Vicente-Palacios, V.; Dorado-Díaz, P. I.; Sánchez, P. L.
    The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these contexts is the medical domain, as these algorithms can support disease detection, image segmentation and other multiple tasks. However, it is necessary to organize and arrange the different data resources involved in these scenarios and tackle the heterogeneity of data sources. This work presents the CARTIER-IA platform: a platform for the management of medical data and imaging. The goal of this project focuses on providing a friendly and usable interface to organize structured data, to visualize and edit medical images, and to apply Artificial Intelligence algorithms on the stored resources. One of the challenges of the platform design is to ease these complex tasks in a way that non-AI-specialized users could benefit from the application of AI algorithms without further training. Two use cases of AI application within the platform are provided, as well as a heuristic evaluation to assess the usability of the first version of CARTIER-IA.
  • Thumbnail Image
    Item
    Connecting domain-specific features to source code: Towards the automatization of dashboard generation
    (2019-10-31) Vázquez-Ingelmo, A.; García-Peñalvo, F. J.; Therón, R.; Amo-Filvà, D.; Fonseca-Escudero, D.
    Dashboards are useful tools for generating knowledge and support decision-making processes, but the extended use of technologies and the increasingly available data asks for user-friendly tools that allow any user profile to exploit their data. Building tailored dashboards for any potential user profile would involve several resources and long development times, taking into account that dashboards can be framed in very different contexts that should be studied during the design processes to provide practical tools. This situation leads to the necessity of searching for methodologies that could accelerate these processes. The software product line paradigm is one recurrent method that can decrease the time-to-market of products by reusing generic core assets that can be tuned or configured to meet specific requirements. However, although this paradigm can solve issues regarding development times, the configuration of the dashboard is still a complex challenge; users' goals, datasets, and context must be thoroughly studied to obtain a dashboard that fulfills the users' necessities and that fosters insight delivery. This paper outlines the benefits and a potential approach to automatically configuring information dashboards by leveraging domain commonalities and code templates. The main goal is to test the functionality of a workflow that can connect external algorithms, such as artificial intelligence algorithms, to infer dashboard features and feed a generator based on the software product line paradigm
  • Thumbnail Image
    Item
    Proposing a machine learning approach to analyze and predict employment and its factors
    (2018-08-28) García-Peñalvo, F. J.; Cruz-Benito, J.; Martín-González, M.; Vázquez-Ingelmo, A.; Sánchez-Prieto, J. C.; Therón
    This paper presents an original study with the aim of propose and test a machine learning approach to research about employability and employment. To understand how the graduates get employed, researchers propose to build predictive models using machine learning algorithms, extracting after that the most relevant factors that describe the model and employing further analysis techniques like clustering to get deeper insights. To test the proposal, is presented a case study that involves data from the Spanish Observatory for Employability and Employment (OEEU). Using data from this project (information about 3000 students), has been built predictive models that define how these students get a job after finalizing their degrees. The results obtained in this case study are very promising, and encourage authors to refine the process and validate it in further research.
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported