GRIAL resources
Permanent URI for this communityhttps://repositorio.grial.eu/handle/123456789/1
Browse
4 results
Search Results
Item Visibilizar el ecosistema de políticas abiertas para democratizar el conocimiento(Octaedro, 2025-10-01) Coria Tinoco, Raúl; Delgado Fabián, Mónica; García-Peñalvo, Francisco José; Glasserman-Morales, Leonardo David; González-Pérez, Laura Icela; Rodríguez Palacios, Sara María del Patrocinio; Sánchez Reyes, Miriam Guadalupe; Tenorio-Sepúlveda, Gloria Concepción; Valencia González, Gloria Clemencia; Valenzuela Arvizu, Siria Yahaira; Viñoles Cosentino, VirginiaEn una era de constante cambio, es esencial potenciar el acceso abierto al conocimiento para transformar la educación y la ciencia a nivel global. Ante la falta de transparencia y espacios que canalicen información sobre políticas de acceso abierto surge el Observatorio OPALO (Open Policies for ALl Observatory), que busca mejorar la transparencia y fomentar un ecosistema inclusivo, accesible y equitativo. Su meta es identificar brechas, buenas prácticas y oportunidades para desarrollar políticas que faciliten el acceso a recursos educativos y científicos, especialmente en regiones en desarrollo. El impacto esperado incluye: a) en educación, promo-ver el acceso igualitario a recursos abiertos mediante tecnologías emergentes y metodologías colaborativas; b) en ciencia, impulsar la colaboración global y la reproducibilidad científica a través de políticas de acceso libre y el intercambio de datos; c) en gobernanza, fomentar políticas basadas en evidencia y desarrollar infraestructuras de datos accesibles; y d) crear un modelo de madurez del conocimiento abierto que permita a las instituciones autoevaluarse y mejorar sus prácticas. El equipo, conformado por profesionales de Colombia, España y México, cuenta con experiencia interdisciplinar en ingeniería sostenible, tecnología educativa, ciencia abierta y políticas de conocimiento. Su enfoque en metodologías transformadoras y soluciones accesibles, así como su participación en iniciativas internacionales como la Cátedra UNESCO/ICDE, asegura un impacto global, inclusivo y sostenible.Item Analíticas del aprendizaje basadas en datos e inteligencia artificial en la educación superior: una revisión sistemática(IEEE, 2025-09-29) González-Pérez, Laura Icela; García-Peñalvo, Francisco José; Argüelles-Cruz, Amadeo JoséLa integración responsable de la inteligencia artificial en la educación (IAED) ofrece una oportunidad estratégica para alinear los entornos formativos con los principios de la Sociedad 5.0, potenciando la sinergia humano-tecnología en favor de una educación de calidad y del bienestar social. Este estudio presenta una revisión sistemática de 36 artículos arbitrados (2021–2025), centrados en aplicaciones educativas que emplean analíticas de aprendizaje (LA) con enfoques data-driven e integran modelos de Machine Learning (ML) como parte de su evidencia empírica. En cada estudio se identificaron tres elementos clave: el contexto de aplicación de la IAED, el enfoque data-driven adoptado y el modelo de ML utilizado. Los hallazgos revelan una desconexión entre los modelos de IA empleados y los datos educativos, los cuales, en muchos casos, se reducen a logs de acceso a calificaciones capturadas manualmente, que no permiten medir procesos cognitivos de manera profunda. Esta limitación compromete tanto la capacidad de los modelos ML para entrenarse de manera efectiva como su utilidad para ofrecer intervenciones pedagógicas útiles, como pueden ser rutas de aprendizaje personalizadas, retroalimentación en tiempo real, detección temprana de dificultades y seguimiento y visualización. Otro hallazgo relevante es la ausencia de marcos psicopedagógicos integrados a estándares de calidad y de gobernanza de datos, indispensables para avanzar hacia enfoques prescriptivos y éticos, coherentes con las metas de aprendizaje. Se recomienda que los líderes educativos promuevan aplicaciones de IAED sustentadas en marcos de gestión de datos y ética, asegurando métricas válidas y confiables que impulsen una educación más equitativa e inclusiva.Item Data-Driven Learning Analytics and Artificial Intelligence in Higher Education: A Systematic Review(IEEE, 2025-09-29) González-Pérez, Laura Icela; García-Peñalvo, Francisco José; Argüelles-Cruz, Amadeo JoséThe responsible integration of Artificial Intelligence in Education (AIED) offers a strategic opportunity to align learning environments with the principles of Society 5.0, fostering human–technology synergy in support of quality education and social well-being. This study presents a systematic review of 36 peer-reviewed articles (2021–2025) focused on educational appli-cations that employ learning analytics (LA) through data-driven approaches and integrate machine learning (ML) models as part of their empirical evidence. Each study was analyzed according to three key dimensions: the context of AIED application, the data-driven approach adopted, and the ML model implemented. The findings reveal a persistent disconnect between the AI models employed and the available educational data, which in many cases are limited to access logs or manually recorded grades that fail to capture deeper cognitive processes. This limitation constrains both the effective training of ML models and their pedagogical utility for delivering meaningful interventions such as personalized learning pathways, real-time feedback, early detection of learning difficulties, and monitoring and visualization tools. Another significant finding is the absence of psychopeda-gogical frameworks integrated with quality standards and data governance, which are essential for advancing prescriptive and ethical approaches aligned with learning goals. It is therefore recommended that educational leaders foster AIED applications grounded in data governance and ethics frameworks, ensuring valid and reliable metrics that can drive a more equitable and inclusive education.Item Presentation of the paper “Discovery Tools for Open Access Repositories: A Literature Mapping”(2016-11-03) González-Pérez, Laura IcelaThis is the presentation of the paper entitled “Discovery Tools for Open Access Repositories: A Literature Mapping” in the New publishing and scientific communication ways: Electronic edition, digital educational resources Track of the TEEM 2016 International Conference held in Salamanca (Spain) in November 2-4, 2016. This paper describes the development of a systematic literature mapping approach that was used to identify and categorize current global studies wherein librarians utilized updated methodologies to select and implement Discovery Tools within Online Public Access Catalogs (OPAC) and Open Access Repositories (OAR). In line with systematic mapping protocols, this paper seeks to address the following questions: 1) What are the processes involved in the implementation of Discovery Tools (DT) within the OPAC and OAR of the libraries of universities and global research institutions? 2) How many studies have presented results concerning the methodologies used during efforts to evaluate the efficiency of DT functionalities? 3) What are the criteria used to measure the degree of satisfaction with regard to awaited expectations? Ultimately, the collected information will be used to document the state of a PhD thesis that aims to create a prototype for the usability evaluation of OAR that will lend visibility to the results of a project entitled “A Binational Laboratory for the Intelligent Management of Energy Sustainability and Technological Formation”.