García-Peñalvo, Francisco José2026-02-152026-02-16F. J. García-Peñalvo, “Alfabetización en IA y su impacto en el empleo,” presentado en el curso La IA en la búsqueda de empleo, el Servicio de Empleo y Emprendimiento (SIPPE) de la Universidad de Salamanca. Salamanca, España, 16 de febrero de 2026. Disponible: https://d66z.short.gy/WDAadd. doi: 10.5281/zenodo.18641498.https://repositorio.grial.eu/handle/123456789/3288Participación en el curso “La IA en la búsqueda de empleo”, organizado por el Servicio de Empleo y Emprendimiento (SIPPE) de la Universidad de Salamanca, con el tema “Alfabetización en IA y su impacto en el empleo”, de 4 horas de duración, impartido el 16 de febrero de 2026. El material de la sesión “Alfabetización en IA y su impacto en el empleo” se estructura como un recorrido que abarca desde la activación inicial del grupo hasta una comprensión básica (pero rigurosa) de la IA y, finalmente, a su aterrizaje en el mercado laboral y en la búsqueda de empleo. Empieza con una dinámica de “romper el hielo” para diagnosticar el punto de partida del alumnado: un semáforo de familiaridad con la IA (de “no he usado IA” a “la uso a menudo y sé comparar resultados”), un sondeo rápido sobre las herramientas utilizadas (ChatGPT, Gemini, Claude) y un mapa de usos reales (estudio, trabajo y búsqueda de empleo). También incorpora una “línea de posición” para debatir mitos y miedos: desde “la IA me ayuda y me da ventaja” hasta “la IA pone en riesgo mi empleo”, conectando con el contexto social del cambio tecnológico y con el “shock del futuro”. A partir de ahí, se define qué es la Inteligencia Artificial desde distintas perspectivas: se reconoce la dificultad de definirla debido a la coexistencia de paradigmas, se introduce la definición de McCarthy y se incluye la definición de la Comisión Europea, que enfatiza sistemas capaces de analizar su entorno y actuar con cierto grado de autonomía. Se distingue entre IA fuerte y débil, y se presentan tipologías (ANI, AGI, ASI) y ámbitos de aplicación (derecho, medicina, industria, educación, etc.), para evidenciar que la IA ya opera en múltiples dominios. El bloque “cómo funciona una IA” utiliza una analogía pedagógica (un bebé que aprende) para explicar conceptos como modelo, datos, entrenamiento y evaluación, y para diferenciar entre el aprendizaje supervisado, el no supervisado y el por refuerzo. Se introduce el ajuste fino (fine-tuning) como una especialización, lo que refuerza la idea de que no existe un modelo universalmente excelente para todo: la especialización y el contexto importan. En la parte de Inteligencia Artificial Generativa se enmarca la disrupción asociada a los grandes modelos de lenguaje (LLM) y a la popularización de las interfaces conversacionales. Se explican, de forma accesible, conceptos como token, probabilidad de la siguiente palabra, parámetros y ventana de contexto. Se ofrece un panorama de técnicas (GAN, GPT, modelos de difusión, etc.), beneficios (productividad, creatividad, aprendizaje informal) y riesgos (alucinaciones, sesgos, privacidad, dependencia, impacto ambiental), con especial atención a las alucinaciones y sus tipos: contradicciones, errores factuales o matemáticos y citas inventadas. El tramo de mercado laboral aterriza en el ATS (Applicant Tracking System): software que recibe, parsea y organiza candidaturas, permite filtrar por palabras clave y prioriza una lista para su revisión humana. De ahí se derivan reglas prácticas: CV legible para el sistema y convincente para la persona, secciones estándar, texto real (evitar imágenes para datos clave), ítems claros con logros medibles y palabras clave coherentes sin “relleno”. Se enseña a identificar keywords en la oferta (técnicas, transversales, tareas y “knockout”) y dónde ubicarlas en el CV. Finalmente, se presenta cómo “traduce” la IA un perfil (experiencia → competencias inferidas → evidencias/logros → keywords) y se propone un proceso guiado con herramientas: crear cuentas, probar prompts y realizar un caso completo de oferta → requisitos → viñetas STAR y versión ATS. Como cierre, se subraya que el chat parece fácil, pero la calidad depende del prompt y del contexto; y que hay que verificar, medir y mantener la autenticidad.esInteligencia ArtificialInteligencia Artificial GenerativaLLMEmpleoAlfabetización en IA y su impacto en el empleoLearning Object