
sensors

Systematic Review

Systematic Literature Review of Realistic Simulators Applied in
Educational Robotics Context

Caio Camargo 1, José Gonçalves 1,2,3 , Miguel Á. Conde 4,* , Francisco J. Rodríguez-Sedano 4, Paulo Costa 3,5 and
Francisco J. García-Peñalvo 6

����������
�������

Citation: Camargo, C.; Gonçalves, J.;

Conde, M.Á.; Rodríguez-Sedano, F.J.;

Costa, P.; García-Peñalvo, F.J.

Systematic Literature Review of

Realistic Simulators Applied in

Educational Robotics Context. Sensors

2021, 21, 4031. https://doi.org/

10.3390/s21124031

Academic Editor: Seokheun Choi

Received: 5 May 2021

Accepted: 4 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; caioo.rafael@gmail.com (C.C.);
goncalves@ipb.pt (J.G.)

2 CeDRI—Research Centre in Digitalization and Intelligent Robotics, 5300-253 Bragança, Portugal
3 INESC TEC—Institute for Systems and Computer Engineering, 4200-465 Porto, Portugal; paco@fe.up.pt
4 Robotics Group, Engineering School, University of León, Campus de Vegazana s/n, 24071 León, Spain;

francisco.sedano@unileon.es
5 Universidade do Porto, 4200-465 Porto, Portugal
6 GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain;

fgarcia@usal.es
* Correspondence: mcong@unileon.es

Abstract: This paper presents a systematic literature review (SLR) about realistic simulators that
can be applied in an educational robotics context. These simulators must include the simulation of
actuators and sensors, the ability to simulate robots and their environment. During this systematic
review of the literature, 559 articles were extracted from six different databases using the Population,
Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected
articles were included in this review. Several simulators were found and their features were also
analyzed. As a result of this process, four realistic simulators were applied in the review’s referred
context for two main reasons. The first reason is that these simulators have high fidelity in the robots’
visual modeling due to the 3D rendering engines and the second reason is because they apply physics
engines, allowing the robot’s interaction with the environment.

Keywords: robotics; education; realistic simulators; sensors; actuators; physics engine

1. Introduction

With the development of computers, simulation has become a powerful tool in the
many areas in which it can support design, planning, analysis and decision-making in
research and development [1–5].

Simulation is the process of designing a model of an actual or theoretical physical
system, executing the model and analyzing the output. It helps to understand our reality
and its complexity by building artificial objects and dynamically acting out roles. The
simulation application enables learning about something in a very effective way and, by
modifying environment rules, we can observe the results of the interactions. It is also
an interdisciplinary field, applied in all research fields in society, from engineering and
computer science to economics and social science, and at all different scientific study levels,
even to manufacturers. Researchers and companies may build experimental systems using
simulators even in the early development stages, testing complexity, reality and specificity.
The simulation tests can be gradually increased to a level where these virtual systems can
help to solve real challenges of the physical world, create new revolutionary products
and push human imagination and creative boundaries—one of the main applications of
simulation in the robotics field. By designing new products and investigating performance,
simulation permits the study of structures, characteristics and a robotic system’s function
no matter how complex it is. Although, as the system’s complexity increases, the need
for simulation rises at the same level. Hence, the simulation tools can, for sure, improve

Sensors 2021, 21, 4031. https://doi.org/10.3390/s21124031 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5499-1730
https://orcid.org/0000-0001-5881-7775
https://orcid.org/0000-0001-9987-5584
https://doi.org/10.3390/s21124031
https://doi.org/10.3390/s21124031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124031
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124031?type=check_update&version=1


Sensors 2021, 21, 4031 2 of 25

design, development and robotic operating systems. Simulators utilizing a graphical user
interface and visualization tools can provide us with a realistic way of visualizing the
robotics system’s operation [1].

Robot simulation started to become feasible and got more attention when the com-
putational power of personal computers increased over the years in a significant way. In
almost every computer today, it is possible to run complex algorithms and many graphical
calculations. With that, realistic simulations are also possible thanks to the game industry’s
efforts to create realistic visualisation in computer games. The creation of virtual worlds
requires considerable processing power to render graphical environments and physics cal-
culations. Consequently, this effort developed software engines that provide high-quality
physics simulations and rendering software in the robotics domain [2].

In this context, physics engines are software that allow computers to create physics
phenomena that we experience in the real world, that is, rigid body dynamics, collision
detection, soft body dynamics, fluid dynamics and other physical aspects, and apply
them to 3D objects in games (the most usual application) and other 3D renderings, which
affects how those objects interact in the digital world. Game developers and video effects
artists use physics engines to create lifelike computer-generated environments for video
games, movies and television. Some architects may use physics engines to create realistic
3D renderings for concept designs. Even if a 3D environment does not require real-
life physics, a physics engine will allow the designer to customise physics to fit their
needs [6,7].Without something like a physics engine telling many different 3D objects how
to interact, programming an environment would be extremely time-consuming. Some
environments may have hundreds of objects that all interact with each other in various
ways. For example, an object in a bowl on a table is interacting with the bowl, the other
objects in the bowl, the table and the ground the table sits on. As a game developer or
video effects artist, a physics engine will be part of the suite of tools applied to create 3D
environments. In many cases, physics engines are included in game engines, 3D modeling
suites and 3D rendering tools. However, it may be offered as a standalone or as a plug-in
to another software [8,9].

To qualify as a physics engine, a software must:

1. Simulate a variety of physical systems (rigid body dynamics, soft body dynamics,
fluid dynamics, etc.);

2. Apply those systems to 3D objects and environments;
3. Work in tandem with other software systems to create a cohesive experience.

The main objective of this work is to present a systematic literature review that allows
us to understand whether there are any realistic simulators that are or can be applied
in an educational robotics context, and to obtain scientific databases in order to analyze
and compare the features of these kinds of simulators. The reason for exploring the
educational context is because of the multiple advantages for pre-university students of
robotics application [10], specially for developing STEAM related competences [11]. Still
within the context of educational robotics, this research seeks to find, analyze and compare
realistic simulators capable of simulating robots, sensors and actuators in general. In order
to answer the research question of this work and fulfill the goal, this review becomes
important for future applications and frameworks that can be developed using these
simulation tools to be applied at all educational levels and, as a consequence, in teaching
robotics and computer science topics.

The structure of this work is as follows: Section 2 describes all the methodology
followed to execute the systematic literature review [12], the research question, the PICOC
method and the search string equation that was applied to the databases. Section 3
presents a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
flow diagram with all the papers obtained from the database searches of the previous
section. Section 4 discusses and analyzes the results from the selected and relevant papers,
after filtering by selection criteria. Finally, in Section 5, conclusions and future work
are proposed.



Sensors 2021, 21, 4031 3 of 25

2. Method

This paper was conducted by following the systematic literature review methodology
presented by Kitchenham [13–15]. A systematic literature review is a means of evaluating
and interpreting all available research, relevant to a particular research question, topic area,
or phenomenon of interest. The SLR aims to present a fair evaluation of a research topic
using a trustworthy, rigorous and auditable methodology. The guidelines for conducting
an SLR are divided into three phases: planning the review, conducting the review and
reporting the review [16–22].

Before starting the planning of the SLR, a preliminary search is needed on a database,
such as Google Scholar, to verify if there is an SLR with the same theme of research. If there
is an SLR with the same topic, there would not be any need to conduct a new one [23,24].
In the case of this systematic review of the literature, no results were found, covering the
realistic simulators subject, therefore, the SLR can be carried out as new research.

2.1. Planning the Review

The first part is the review planning, consisting of the process of identification and
definition of the review execution, ensuring that the review is traceable [25]. At the
beginning, it is necessary to clearly specify the research question that it aims to investigate.
For this work, taking into account the described context in the Introduction, the research
questions (RQs) are:

• RQ1: In the context of educational robotics, are there any realistic simulators capable
of simulating any robot prototype?

• RQ2: Are these simulators capable of simulating the robot’s sensors and/or actuators?
• RQ3: Is such simulation based on physics engines?

Once the research questions have been defined, the PICOC method proposed by
Petticrew and Roberts [22] was followed to define the review scope.

• Population (P): Robotics Simulators;
• Intervention (I): Realistic Robotics Simulators;
• Comparison (C): Compare the already existing robotics simulators;
• Outcome (O): Understand the ways of simulate realistic robots, being able to simulate

micro-controllers, sensors and actuators as well;
• Context (C): Educational Robotics.

2.2. Inclusion and Exclusion Criteria

With the PICOC established, the scope of the review has been set, accompanied by the
research questions and selection criteria—inclusion (IC) and exclusion (EC)—are defined
to select the relevant papers that answer the research questions. For a paper to be selected,
it has to meet all the Inclusion Criteria, and if it meets any Exclusion Criteria, it will
be excluded.

• IC1: The papers are written in English; (AND)
• IC2: The papers are reported in peer reviewed conferences or journals or technical

reports; (AND)
• IC3: The papers that use any kind of simulator, OR simulate realistic robotics, OR

simulate sensors OR Actuators.

The Exclusion Criteria are the opposite of the Inclusion Criteria.

• EC1: The papers are NOT written in English; (OR)
• EC2: The papers are NOT reported in peer reviewed conferences or journals or

technical reports; (OR)
• EC3: The papers that do NOT use any kind of simulator, OR simulate realistic robotics,

OR simulate sensors OR Actuators.



Sensors 2021, 21, 4031 4 of 25

These selection criteria will determine whether, from reading the paper’s title and
abstract, it will be included in the review or not, and whether it is useful to include relevant
works in the review in terms of its scope.

2.3. Search Methodology

The methodology of an SLR differs from a search made randomly on the Internet in
several aspects. One of the most relevant is the need to determine the data sources, which
should be the most important databases in terms of the research context. The electronic
databases used in this work were: ACM Digital Library, IEEE Digital Library, ISI Web of
Science, ScienceDirect, Scopus and Springer Link.

These databases were selected for three main reasons:

1. They are well-known databases in this research field;
2. They are relevant databases in the research theme of this literature review;
3. It is possible to use a search string as well as Boolean operators to improve the results

of the search process.

Given this procedure, the next step is to define the search string equation for the
different databases. It was built using relevant terms from the PICOC methodology and
they were connected by Boolean “AND” and “OR” operators [26,27]. Moreover, the asterisk
sign operator was used to include both the singular and plural of each term. Taking this
into account, the search string equation is shown as follows:

(“educational robotics” OR “educative robotics” OR “robotics and education”)
AND (“realistic simulators” OR “prototype” OR “prototyping”)

The search string equation is divided into two main parts. The first part contains three
related concepts, which are: “Educational Robotics”, “Educative Robotics” or “Robotics
and Education”. These concepts are inclusive and connected between each other, and they
were retrieved from the Context from the PICOC methodology. The search string equation
will be executed in the all electronic databases in order to gather all the published papers
connected with those areas.

The second part of the search equation is related to the main objective of this work,
the terms: “Realistic Simulators”, “Prototype” or “Prototyping”. The “Realistic Simulators”
term has the role of finding in the electronic databases all the papers that in some way have
used a realistic simulator. The two last terms “Prototype” or “Prototyping” are related and
help to expand our search, because these words represent one of the main applications for
simulators, that is, prototype simulation.

The following describes and shows the search strings equation applied to each database.

1. ACM Digital Library: For the ACM Digital Library (http://portal.acm.org, accessed
on 8 June 2021) the Advanced Search resource was used, where the search equation
was split into two parts placed in two separated search fields; the query syntax
returned from this database is is shown below:

[[All: “educational robotics”] OR [All: “educative robotics”] OR [All: “robotics
and education”]] AND [[All: “realistic simulators”] OR [All: “prototype”]
OR [All: “prototyping”]]

2. IEEE Digital Library: In the IEEE Digital Library (http://ieeexplore.ieee.org, accessed
on 8 June 2021), we used the simple search bar on the web site, pasting the search
strings there.

3. ISI Web of Science: In the ISI Web of Science (http://www.isiknowledge.com, ac-
cessed on 8 June 2021) he query terms were posted in the basic search tab to obtain
the papers.

4. ScienceDirect: For ScienceDirect (http://www.sciencedirect.com, accessed on 8 June
2021), the use of the website was very straight forward; the equation was pasted in
the search field to obtain the results from the database.

http://portal.acm.org
http://ieeexplore.ieee.org
http://www.isiknowledge.com
http://www.sciencedirect.com


Sensors 2021, 21, 4031 5 of 25

5. Scopus: In the Scopus database (http://www.scopus.com, accessed on 8 June 2021),
the use of advanced search was needed in order to obtain the maximum possible
results. The entered query strings used were:

ALL(“Educational Robotics” OR “Educative Robotics” OR “Robotics and
Education”) AND ALL(“Realistic Simulators” OR “Prototype” OR “Proto-
typing”).

6. Springer Link: For the Springer Link database (http://link.springer.com, accessed
on 8 June 2021), the query string was used in the simple search bar on the website.

2.4. Quality Criteria

After the first preliminary part of paper selection, described as the Inclusion and
Exclusion criteria, a new set of questions was defined to check the work’s quality before
including them in the final literature review.

Each question can be answered with a possible weight between three values: 4.0 (Yes,
it answers the question fully), 2.0 (Yes, it answers the question partially) and 0.0 (No, it
does not answer the question). These values are assigned to the papers by reading them
fully. The quality assessment checklist is shown in Table 1.

Table 1. Quality Assessment Checklist.

Quality Questions Questions

QQ1 Is the paper based on research or is it a report based on expert opinion?
QQ2 Is there a description of the context in which the research was carried out?
QQ3 Is there a clear statement of the aims of the research?
QQ4 Was the research conducted to address the aims of the research?
QQ5 Were the simulations made during the study applied in an educational context?
QQ6 Could the simulator used in the study be applied in an educational context?
QQ7 Is the simulator used in the research able to make realistic simulations?
QQ8 Was the method used during the study described?
QQ9 Was the data analysis sufficiently rigorous?

QQ10 Is the study of value for the research field?
QQ11 Is there a clear statement of findings?

Therefore, each paper can be assigned a maximum of 44.0 points based on the quality
criteria. In Figure 1, it can be observed the distribution of these quality data.

Figure 1. Distribution of Quality Data.

http://www.scopus.com
http://link.springer.com


Sensors 2021, 21, 4031 6 of 25

The median overall score (out of 44) of the 100 included studies was 30, and the mean
overall score was 29.08. We, therefore, decided to set a cut-off score of 30 points. All those
papers that exceeded this score were included in the final synthesis.

Data Extraction Form

When the quality assessment process of the papers was running out, a data extraction
form was made with a set of questions to evaluate the simulators used during the reading
of the works. These questions are shown in Table 2.

Table 2. Data Extraction Form.

Data Questions Questions

DQ1 Is the simulator able to simulate robotics?
DQ2 Is the simulator able to simulate sensors?
DQ3 Is the simulator able to simulate actuators?
DQ4 What method is used for the simulator?
DQ5 Is the realistic simulation made under a mathematical–physical model?
DQ6 What is the simulator used?
DQ7 Is the simulator free to use?
DQ8 Is the simulator open-source or not?

For the first three questions (DQ1, DQ2 and DQ3), the answer is Boolean so it could
be answered with “Yes” or “No”. The following three questions (DQ4, DQ5 and DQ6)
should be answered with strings. DQ4 describes the method used in the paper for using
the simulator; DQ5 describes whether the simulation was made under a mathematical–
physical model; and DQ6 states the name of the simulator applied. The last two questions
required selecting one possible option. DQ7 asks if the simulator is free to use, is fully paid
or a mix of both and DQ8 asks if the simulator is an open-source platform or not. The result
of this data extraction will be presented in the results section in a Table format, in which
every mentioned simulator in the papers has a score equal to or above 30.0.

3. Results

This section presents all the results obtained from the searches on the databases. The
data compilation was divided into different phases according to the PRISMA flow diagram,
shown in Figure 2, which details the actions taken during the SLR process [28,29].

This process was carried out following the methodology described in Section 2.3. The
search on the databases was performed (on 27 August 2020), carrying on with the paper
selection process:

1. First, the results retrieved from the initial search were 559 papers in total, distributed in
41 citations from the ACM Digital Library, 14 from the IEEE Digital Library, 22 papers
from ISI Web of Science, 92 works from ScienceDirect, 204 citations from Scopus and
186 from Springer Link.

2. After the search, all these references were uploaded and organized into the Parsifal
(https://parsif.al/, accessed on 8 June 2021) (the main tool applied to conduct this
SLR) and it detected 60 duplicated records that were consequently removed.

3. As result, 499 works were retrieved from the previous step and they were analyzed
through the reading of their titles, keywords and abstracts and applying the Inclusion
and Exclusion Criteria. From this process, 434 articles were excluded because they did
not meet the requirements, leading us to the next phase, with 65 papers.

4. The accepted papers were read in detail. When each article was read, it was scored re-
garding its quality, applying the quality assessment questions described in Section 2.4.
In addition, while reading these works, their references were carefully checked in
order to find new articles (as an alternative source) that could address the research
question, resulting in 35 new reports (on 7 December 2020). Figure 3 shows the amount
of obtained articles per source and year, and those which were accepted per source.

https://parsif.al/


Sensors 2021, 21, 4031 7 of 25

A relevant issue to take into account is that none of the selected papers were from
the Web of Science or the IEEE Digital library data sources, so these databases are not
shown in the graphic.

5. After the evaluation of the papers’ quality, 15 papers that scored higher than or equal
to 30 were selected, adding to them the 35 obtained from the reference checking of the
previous phase. This resulted in a total of 50 selected works with which to compose
the present review, which can be seen distributed by publication year and source in
the Figure.

Figure 2. The Systematic Literature Review process. Adapted from [29].

Figure 3. Distribution of publication per year and source.



Sensors 2021, 21, 4031 8 of 25

4. Discussion and Results

This section describes the results of the developed systematic literature review. How
every simulator addresses the research questions (RQ1, RQ2 and RQ3) made in the
Section 2.1 is discussed, through the data extraction form presented in Table 2. Taking this
into account, further subsections point out the answers to the data questions by discussing
three main issues: (1) the features of the simulators found in the review; (2) some inter-
esting exceptions about papers included in the study; and (3) the features of the engines,
on which the simulators are based. Finally, a subsection describes the Robot Operating
System, which is an alternative method for writing the robots’ software in the simulators.

Table 3 presents all the papers selected, showing their quality scores, the name of the
simulator used and its ability to simulate robots, and its sensors and actuators. Note that
the columns tagged as d, e and f address the answers to Data Questions 1, 2 and 3, meaning
whether the simulator is able to simulate robotics, sensors and actuators, respectively.

Table 3. All the papers included in the SLR. In (a) All the selected studies about simulators. (b) The
answer for Data Question 6 (DQ6), in which the answer is the name of the simulator used in the
refereed study. The (c) column is the paper’s score in the quality assessment. Lastly, (d), (e) and (f)
columns concern the ability to simulate robotics, sensors and actuators, addressing Data Questions
(DQ1),(DQ2) and (DQ3), respectively.

Reference a DQ6 b Score c DQ1 d DQ2 e DQ3 f

[30] ARGoS 40 True True True
[31] Sim-Two 36 True True True
[32] Sim-Two 40 True True True
[33] Sim-Two 40 True True True
[34] Sim-Two 38 True True True
[35] ROS 34 False False False
[36] Gazebo 40 True True True
[37] RoSoS 44 True False False
[38] Sim-Two 44 True True True
[39] USARSim 38 True True True
[40] Breve 34 True False False
[41] Sim-Two 40 True True True
[42] Sim-Two 40 True True True
[43] V-REP 44 True True True
[44] ROS Development Studio 36 True True True
[45] Gazebo 40 True True True
[46] Webots 32 True True True
[47] Gazebo 36 True True True
[48] Simulink 34 False True True
[49] V-REP 44 True True True
[50] Gazebo 42 True True True
[51] Sim-Two 40 True True True
[52] Sim-Two 38 True True True
[53] Gazebo 36 True True True
[54] Sim-Two 40 True True True
[55] Sim-Two 40 True True True
[56] Sim-Two 40 True True True
[57] Player/Stage 42 True True True
[58] jmeSim 32 True True True
[59] Sim-Two 44 True True True
[60] Stage 40 True True True
[61] Exception 1 34 True True True
[62] Sim-Two 44 True True True
[63] Sim-Two 40 True True True



Sensors 2021, 21, 4031 9 of 25

Table 3. Cont.

Reference a DQ6 b Score c DQ1 d DQ2 e DQ3 f

[64] Sim-Two 40 True True True
[65] Sim-Two 32 True True True
[66] Gazebo 42 True True True
[67] Sim-Two 44 True True True
[68] UberSim 38 True True True
[69] Sim-Two 44 True True True
[70] Creo 32 True True True
[71] Sim-Two 42 True True True
[72] Sim-Two 38 True True True
[73] Sim-Two 40 True True True
[74] Gazebo 42 True True True
[1] MATLAB/Simulink 42 True True True

[75] Exception 2 42 True True True
[76] UberSim 40 True True True
[77] V-REP 34 True True True
[78] V-REP 44 True True True

As shown in Table 3, several simulators were found, and the most used from the
selected papers were Sim-Two (22 times), Gazebo (7 times) and V-REP (4 times). Something
to point out is that the papers with a score of 42 points or 44 points are those applied
in the educational context that were able to simulate all the features inquired for the
research questions, but with a few exceptions (such as Exception 1 and Exception 2) that
are described in the next subsections.

Although the most used simulators were Sim-Two, Gazebo and V-REP, others were
found through the reading process (Table 3). The table presents a distribution of the
simulators in this literature review.

As can be noticed, the most mentioned simulators found in the full-read process were:
USARSim, Gazebo, Webots, Sim-Two, Stage/Player, V-REP, UberSim, MuRoSimF and the
Microsoft Robotics Studio. To better understand the reason why the papers’ authors cite or
use them, each simulator is investigated and described in the next subsection.

4.1. Simulators Features

In this subsection the features of the simulators found in the literature are described.
Besides the papers studied during the research methodology, in this part it another search
was made in Google Scholar in order to find papers that contain the simulators’ details and
facts to add and support the information about the simulators presented in Table 4. This
is necessary because, as the analysis in Figure 3 shows, most of the papers included are
from before 2016, and many of the features of the simulators may have changed through
the years due to technology evolution. The simulator features can be found in Table 5.

As can be observed, many simulators were found during the search. The main
characteristic among some of them is that they are based on physics engines, which allows
them to simulate the robot and the robot’s environment in a more realistic way. Another
important feature that was noticed was that some of these simulators are defined with
multiple simulation purposes (ie V-REP, Webots, Gazebo, SimTwo and others), which
means they are able to simulate several types of robots, unlike others that only simulate
one type of robot (i.e., ARGoS, RoSoS, UberSim, OpenHRP3, Khepera and others).



Sensors 2021, 21, 4031 10 of 25

Table 4. All the simulators mentioned throughout the full-read papers.

Simulators Found in

USARSim [30,36,39,60,75]
SimSpark [32–34]

ROS Development Studio [44]
Gazebo [30,36,38,39,43–45,47,49,50,53,57,60,66,74,75,77]
Webots [30,32–34,36,39,43,44,46,49,57,60,75,77]

Sim-Two [31–33,38,41,42,51,52,54–56,59,62,64,65,67,69,72,73]
ARGoS [30,49,60]

Stage/Player [38,39,57,60]
MORSE [57]
STDR [57]
V-REP [36,43,49,57,77,78]
RoSoS [37]

UberSim [32–34,67,76]
Breve [40]

Teambots [60]
MuRoSimF [30,32–34]

Microsoft Robotics Studio [32,33,36,60]
OpenHRP3 [33,77]

jmeSim [36,58]
BOB [38]

Khepera [38]
Delta3D [38]

MATLAB/Simulink [1,48]
Swarmbot3d [60]

Creo [70]

As a result of searching information about the simulators listed above, an Excel file
was uploaded into a GitHub repository, a summarized Table showing only the simulator’s
main features. The repository’s link can be found in Appendix A.

Finally, most of the simulators were developed in the 2000 s, and it can be observed
that the most mentioned simulators in Table 5 still continue to have updates for current
technologies since their launch. An exception to these simulators is the Microsoft Robotics
Studio, which has been discontinued, as have UberSim and Khepera.

Table 5. Simulators Features.

Simulators

USARSim

Description

Unified System for Automation and Robot Simulator, forming the acronym USARSim,
is a high-fidelity simulation of robots and environments based on the Unreal Tournament
game engine. It was built upon Unreal Engine 2.0, a game engine commercially available
produced by Epic Games. It has a uniform applications programmer interface, validated

models, and physics-based simulation. USARSim is composed of a set of models and
classes that define the simulation of robots, sensors and actuators. It has the ability to

simulate several types of robots as wheeled robots, underwater vehicles, legged platforms
and humanoids [39,79].

Features

Robot Types Wheeled; Underwater; Legged Humanoids;

Sensors and Actuators
Odometry; INU; Encoder; Touch; Range(Sonar,

IR, Scanner); RFID Robot Camera Sound
HumanMotion

Compatibility Player MOAST

Engines Unreal Engine

Programming
Languages

UnrealScript

Other Features
Users can add new robots models, sensors and
actuators; 3D Visualization; Open-Source; Free

to Use;



Sensors 2021, 21, 4031 11 of 25

Table 5. Cont.

Simulators

SimSpark

Description

The SimSpark is a multi-robot simulator based on the generic components of the Spark
physical multi-agent simulation system and its main application is in the Soccer

Competitions. This simulator is implemented through the Open Dynamics Engine (ODE)
for physically realistic dynamics simulation, allowing fast rigid body simulations,
collision detection and the use of articulated body structures. It also includes a 3D

visualization based on OpenGL, enabling the possibility to create scenes.
The creation of new robot models it is possible using the Ruby interface in which

is an interpreted language [32–34,80,81].

Features

Robot Types Wheeled; Legged; Humanoids;

Sensors and Actuators Gyroscope; Motors;

Compatibility TCP Protocol; UDP Protocol;

Engines ODE OpenGL

Programming Languages C++ Ruby

Other Features
Users can add new robots models, sensors and
actuators; 3D Visualization; Open-Source; Free

to Use;

ROS
Development

Studio

Description

ROS Development Studio is a web application for the simulation of robots in the cloud.
This platform consists of virtual machines running in the could infrastructure provided

by Amazon Web Services. The cloud platform supports two simulators, which are
Gazebo and Webots [44].

Features

Robot Types Not Applicable

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines Not Applicable

Programming
Languages Not Applicable

Other Features Not Applicable

Gazebo

Description

Gazebo simulator came up as an improvement of the Player and Stage project, and was designed to
accurately reproduce the dynamic environments that a robot may encounter. It is completely

open source and freely available. Its structure enables the support to simulate multi robot systems,
and its major feature is the ability to easily create new robots, actuators, sensors and arbitrary objects.

It was built based on the Open Dynamics Engine, and currently supports Bullet, Simbody and
DART physics engines. The visualisation of Gazebo’s robots and scenes are in 3D and it was held by

OpenGL and GLUT (OpenGL Utility Toolkit); at the moment it is supported by OGRE [36,47,53].

Features

Robot Types Wheeled; Legged; Humanoids; Arms; Drones;
Others;

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility Player; TCP/IP; ROS; Others;

Engines ODE; Bullet; Simbody; DART; OpenGL; GLUT;
OGRE;

Programming
Languages XML; C++;

Other Features

Users can add new robots models, sensors and
actuators; 3D Visualization; Open-Source; Sensors

and Noise; Plugins; Robot Models; Cloud Simulation;
Command Line Tools; Free to Use;

Webots Description

Webots simulator is an open source and multi-platform desktop application applied to simulate robots.
It provides a complete development environment to model, program and simulate robots.

It has been designed for a professional use, and it is widely used in industry,
education and research. It was developed by Cyberbotics Ltd. in 1998 and currently it is free to use.

The main features about Webots is the combination of a modern graphical user interface (Qt),
the ODE fork physics engine and the OpenGL rendering engine. The robot’s programming may be in C,

C++, Python, Java, MATLAB and ROS. It can simulate a wide variety
of robots as wheeled, industrial arms, bipeds, multi-legs, modular, automobiles,

flying drones, autonomous underwater, tracked and aerospace [46,82].



Sensors 2021, 21, 4031 12 of 25

Table 5. Cont.

Simulators

Features

Robot Types
Two-Wheeled; Arms; Bipeds; Multi-legs; Modular;
Automobiles; Drones; Autonomous Underwater;

Tracked; Aerospace

Sensors and Actuators Several Sensors; Several Motors;

Compatibility ROS; TCP/IP; MATLAB; Others;

Engines Qt; ODE; OpenGL

Programming
Languages C/C++; Python; Java; MATLAB; ROS;

Other Features

Users can add new robot models, sensors and
actuators; 3D Visualization; Open-Source; Asset

Library of Robots, Sensors and Actuators, Objects
and Materials; Free and Paid Versions;

SimTwo

Description

The SimTwo is a versatile robot simulation environment that allows the rapid test and
design of differential, omnidirectional, industrial, humanoid robot and other types.

It also has a set of predefined components, such as sensors and motors, where specified
models are inputted. Realistic rigid body dynamics is possible thanks to the

Open Dynamics Engine, and issues about the robots’ look and behaviors are written in
XML format files. The visualization is in 3D, and that is provided through GLScene.

SimTwo is a free software that is currently open source [38,41,48].

Features

Robot Types Wheeled; Omnidirectional; Industrial; Humanoids;
Others;

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility ROS; MATLAB; LabView; UDP Protocol; Others;

Engines ODE; Physics Abstraction Layer; GLScene; OpenGL;

Programming
Languages XML; C/C++; MATLAB; Labview;

Other Features Asset Library of Robots, Sensors and Actuators,
Objects and Materials; 3D Visualization; Free to Use;

ARGoS

Description

Autonomous Robots Go Swarming is an open source multi-robot simulator that was
designed to study tools and control strategies for heterogeneous swarms of robots.

It initially was released for Linux and Mac OS X, and in 2016 was updated to Windows
systems. The core of its architecture is the simulated 3D space. Sensors and actuators

can be implemented in a generic and efficient way, taking into account specific
components instead of the complete robot. New robots can be inserted, reusing the

already existing components and all the sensors/actuators, depending on those
components working without modification. ARGoS supports multiple engines of different

types and can run in parallel during an experiment. The 3D dynamics engine is based
on the Open Dynamics Engine, and the 2D dynamics engine depends on the open-source

physics engine library Chipmunk. It has either a 3D or 2D custom engine. The 3D
visualization has a graphical user interface based on Qt4 and OpenGL.

ARGoS and the control interface are written in C++ [30,83].

Features

Robot Types Swarm Robotics

Sensors
and

Actuators
Custom Sensors; Custom Motors;

Compatibility Not Applicable

Engines ODE; Chipmunk; Custom 2D and 3D Engine; Qt:
OpenGL;

Programming
Languages C++

Other Features
Users can add new robot models, sensors and
actuators; 3D Visualization; Open-Source; Free

to Use;

Stage/Player Description

Stage is a robot simulator that provides a virtual world populated by mobile robots
and sensors in a two-dimensional bitmapped environment, along with various objects
for the robots to sense and manipulate. It provides several sensor and actuator models,

including sonar or infrared sensors, scanning laser rangefinder, color-blob tracking,
fiducial tracking, bumpers, grippers and mobile robot bases with odometric or global
localization. The main usage for Stage for massively multi-robot experiments, suitable
for swarm robotics and other research where the behavior of large robot populations is
of interest. Player is a network server for robot control. By running on the robot, it can

provide a simple and clear interface for the robot’s sensors and actuators over the
IP network [38,39,57,60,84].



Sensors 2021, 21, 4031 13 of 25

Table 5. Cont.

Simulators

Features

Robot Types Swarm Robotics; Several Robot Models;

Sensors
and

Actuators
Several Sensors Models; Several Motors;

Compatibility Player;

Engines Custom Engine

Programming
Languages C++; TCL; Java; Python;

Other Features
Users can add new robot models, sensors and
actuators; 2D Visualization; Open-Source; Free

to Use;

MORSE

Description

MORSE is a generic simulator for academic robotics. It focuses on realistic
3D simulation from small to large environments, indoor or outdoor, from one

to tenths of autonomous robots and can be entirely controlled from the
command-line. Simulation scenes are generated from simple Python scripts.
MORSE comes with a set of standard sensors and actuators such as cameras,

laser scanners, GPS, speed controllers, high-level waypoints controllers, generic
joint controllers, and so forth. It also has robotic bases as quadrotors, generic four wheel

vehicles, and new ones can easily be added. This simulator is based on the
Blender Game Engine for rendering and the Bullet engine for physics simulation [57,85–87].

Features

Robot Types Wheeled; Quadrotors; Others;

Sensors
and

Actuators
Cameras; Laser Scanner; GPS; Speed Controllers;

Compatibility ROS; YARP; Pocolibs; MOOS; HLA; Mavlink;

Engines Blender Game Engine; Bullet

Programming
Languages Python

Other Features

Users can add new robot models, sensors and
actuators; 3D Visualization; Open-Source; Free to

Use; Asset Library of Robots, Sensors and Actuators,
Objects and Materials;

STDR

Description

Simple Two Dimensional Robot Simulator as the title, the STDR simulator’s goal is to make
a single robot’s or swarm’s simulation as simple as possible; as a consequence,

it is not meant to be the most realistic simulator, by minimizing the needed actions
to perform a experiment. STDR can function with or without a graphical environment,

which allows for experiments to take place even using ssh connections [57].

Features

Robot Types Not Applicable

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines Not Applicable

Programming
Languages Not Applicable

Other Features Not Applicable

V-REP (CoppeliaSim) Description

The Virtual Robot Experimentation Platform or V-REP is the result of
turning all requirements into a versatile and scalable simulation framework.

According to its website https://www.coppeliarobotics.com/, accessed on 8 June 2021,
V-REP was discontinued in November 26 2019, becoming CoppeliaSim

Robot Simulator and owning an integrated development environment based
on a distributed control architecture, which means that each object/model

can be individually controlled via an embedded script such as ROS,
BlueZero node, a remote API client or a custom solution. CoppeliaSim

is very versatile and ideal for multi-robot applications. Controllers can be
written in C/C++, Python, Java, Lua, Matlab or Octave. It can be applied

for fast algorithm development, factory automation simulations, fast
prototyping and verification, robotics related education, remote monitoring,

safety double-checking, as a digital twin, and much more [43,49,77,78,88].

https://www.coppeliarobotics.com/


Sensors 2021, 21, 4031 14 of 25

Table 5. Cont.

Simulators

Features

Robot Types multi-robots

Sensors
and

Actuators
multi-sensors

Compatibility ROS; BlueZero; LabView; TCP/IP;

Engines Bullet; ODE; Vortex; Newton;

Programming
Languages

C/C++; Lua; Java; Python; LabView;
MATLAB; Octave;

Other Features
Asset Library of Robots, Sensors and Actuators,

Objects and Materials; 3D Visualization; Free and
Paid Versions;

RoSoS

Description

Robot Soccer Simulator is a simulator platform that was built and
programmed using Processing language, and considers two guidelines:

1. the program for a virtual robot should be similar to the program of a real
robot; and 2. users should have the possibility to change the simulator

operation, such as physics and game rules, and also to personalize
their robots. It is free, open-source and runs on Windows, Mac OS

and Linux [37].

Features

Robot Types Soccer Robots

Sensors
and

Actuators
Ball Sensor; Compass Sensor; Ultrassonic Sensor;

Compatibility Not Applicable

Engines Custom Engine

Programming
Languages

C++; Java;

Other Features
Noise and Imprecisions; 2D Visualization;

Open-Source; Free to Use;

UberSim

Description

A Multi-Robot Simulator for Robot Soccer was created as a free and
open-source simulator project, with the objective of being a robot soccer

simulation engine with high-fidelity dynamics and collision models
and extensible robot classes, built based on the Open Dynamics Engine [76].

A search was made in order to obtain more information about the
ÜberSim simulator but no further information was found, even its

website was off-line. Thus, it was considered discontinued.

Features

Robot Types Multi-Agent Systems; Artifial Life;

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines OpenGL;

Programming
Languages Python; Steve;

Other Features 3D Visualization; Free to Use; Open-Source;

Breve Description

Breve is a free, open-source software package that makes it easy to build
3D simulations of multi-agent systems and artificial life. Using Python, or

using a simple scripting language called steve, you can define the behaviors of
agents in a 3D world and observe how they interact. Breve includes physical
simulation and collision detection; it is possible to simulate realistic creatures

and to use an OpenGL display engine to visualize simulated worlds.
However, according to its website http://www.spiderland.org/s/, accessed on 8 June 2021,

the project has not been maintained since 2009, but it is still available for
download for Windows, Linux and Mac OS [40].

http://www.spiderland.org/s/


Sensors 2021, 21, 4031 15 of 25

Table 5. Cont.

Simulators

Features

Robot Types Wheeled; Legged; Humanoids; Arms;
Drones; Others;

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility Player; TCP/IP; ROS; Others;

Engines ODE; Bullet; Simbody; DART; OpenGL;
GLUT; OGRE;

Programming
Languages XML; C++;

Other Features

Users can add new robots models, sensors and
actuators; 3D Visualization; Open-Source;

Sensors and Noise; Plugins; Robot Models;
Cloud Simulation; Command Line Tools;

Free to Use;

TeamBots

Description

TeamBots is a 2D Java-based simulator for multi-agent mobile robotics research.
The simulation environment and the robots are written mostly in Java. It supports
multiple heterogeneous robot hardware running heterogeneous control systems.

Complex (or simple) experimental environments can be designed with walls, roads,
opponent robots and circular obstacles. All of these objects may be included in a
simulation by editing an easily understandable human-readable description file.
TeamBots runs under Windows, Linux and MacOS. The search for information

about this simulator was not an easy task and since the latest version of this platform
was updated in April 2000, it can be considered discontinued [60].

Features

Robot Types Nomad 150; Cye Robot;

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines Not Applicable

Programming
Languages Java

Other Features 2D Visualization; Free to Use; Open-Source;

MuRoSimF

Description

The Multi-Robot-Simulation-Framework (MuRoSimF) provides an easy way to
generate interactive simulations for the motion and sensing capabilities of wheeled,

biped and multi-legged robots. Unlike most existing robot simulation packages,
MuRoSimF is not limited to predefined simulation algorithms (e.g., for dynamics or sensor simulation).

Instead of this, it provides a flexible and modular way to combine
simulation models of the robots and algorithms. By this, it is possible to generate simulations,

which are scalable in their level of physical accuracy, level of detail
and computational complexity, thus enabling the user to create simulations

that are adequate to a given task. Using MuRoSimF, several simulations
for mobile robots including wheeled, biped and four-legged devices have been created.

MuRoSimF provides a range of exchangeable algorithms for motion simulation
(kinematic, simplified dynamics, full multi-body-system dynamics),

collision detection and sensor simulation (including cameras, laser range finders
and inertial sensors). More modules, for example, for detailed simulation of servo motors can

be added to the framework easily [89].

Features

Robot Types Wheeled; Bipeds; Multi-Legged

Sensors
and

Actuators
Cameras; Laser Range Finders; Inertial Sensors;

Compatibility Not Applicable

Engines OpenGL; Custom Dynamics Engine;

Programming
Languages C++

Other Features
2D Visualization; 3D Visualization;

Free to Use; Open-Source;



Sensors 2021, 21, 4031 16 of 25

Table 5. Cont.

Simulators

Microsoft
Robotics
Studio

Description

Microsoft Robotics Studio is an environment for robot control and simulation.
It was designed for academic, hobbyist and commercial developers, and it also
contains a wide variety of robot hardware. A point to note about this simulator

is that it is only available on the Windows operational system. The main features
include the Microsoft Visual Programming Language for creating and

debugging robot applications and 3D simulation with access to the robot’s
sensors and actuators. Unfortunately, this simulator was discontinued in 2012 [90–92].

Features

Robot Types multi-robots

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility OpenCV; CodePlex;

Engines NVIDIA PhysX

Programming
Languages

C#; Microsoft Visual Programming Language;

Other Features
3D Visualization; Free and Paid Versions;

Discontuated;

OpenHRP3

Description

Open Architecture Human-centered Robotics Platform version 3 is a
platform for robot simulations and software developments, and it is

mainly applied for humanoid robot simulations. It allows users to check
out a robot model and control program by dynamics simulation.

The simulator has a custom dynamics engine and graphical interface.
The last version was released in 2012 [93,94].

Features

Robot Types Humanoids

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility Not Applicable

Engines Custom Dynamics Engine; Custom Graphical
Engine;

Programming
Languages C++

Other Features 3D Visualitation; Free to Use; Open-Source;

jmeSim

Description

jmeSim is an open source, multi-robot platform; it provides high graphical
and physical fidelity and also supports ROS integration. It was built on the

jMonkey Engine3 game engine. The physics dynamics simulation
is performed by jBullet, a Java port of the Bullet Physics Engine Library.

The jmeSim offers some environment and robot models, such as the wheeled
rescue robot for example, and also provides an array of sensors [58].

Features

Robot Types multi-robots

Sensors
and

Actuators
Several Sensors; Several Motors;

Compatibility ROS

Engines jBullet; jMonkey;

Programming
Languages Java

Other Features 3D Visualization; Free to Use; Open-Source;

Khepera

Description

Khepera Simulator is a freeware public domain software written by Oliver
Michel, and was designed to simulate the Khepera robot. This package allows

the programmer to write control algorithms using C/C++ language.
The simulator runs on Unix operational system and it has X11 as graphical interface.

This simulator features the ability to drive a real Khepera robot, then
the outcome of the simulation test can be easily transferred to a real

Khepera robot. No further information about this simulator was found
and its website, presented in [95], is not available.

Features

Robot Types Khepera Robots

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines X11

Programming
Languages C/C++

Other Features 2D Visualization; Free to Use; Discontinuated;



Sensors 2021, 21, 4031 17 of 25

Table 5. Cont.

Simulators

Delta3D

Description

The simulator Delta3D is an open source game and simulation engine built for
military training. Delta3d is a widely used, community-supported, open-source
game and simulation engine. Delta3d is appropriate for a wide variety of uses

including training, education, visualization and entertainment. Delta3d is unique
because it offers features specifically suited to the Modeling, Simulation and
DoD communities, such as the High Level Architecture (HLA), After Action

Review (AAR), large scale terrain support and SCORM Learning Management
System (LMS) integration. It has a modular design integrating other engines

such as Open Scene Graph, Open Dynamics Engine, Character Animation
Library and OpenAL. The renders engine uses the Open Graphics Library.

The last version released was on September 29 2014 and it is held on Github [96,97].

Features

Robot Types Not Applicable

Sensors
and

Actuators
Not Applicable

Compatibility Not Applicable

Engines
Open Scene Graph; ODE;

Character Animation Library;
OpenAL; Open Graphics Library;

Programming
Languages C++

Other Features
3D Visualization; Free to Use; Open-Source;

Military Purpose;

MATLAB/
Simulink

Description

MATLAB is a powerful general software that aids scientists, researchers and
companies in several engineering/science areas, such as control systems,
deep learning, image processing and computer vision, machine learning,

predictive maintenance, robotics, signal processing, test and measurement
of data and wireless communications. Simulink is a block diagram environment
for multi domain simulation and Model-Based Design. It supports system-level

design, simulation, automatic code generation and continuous testing and
verification of embedded systems. Simulink provides a graphical editor,

customized block libraries, and solvers for modeling and simulating dynamic
systems. It is integrated with MATLAB, enabling the incorporation of MATLAB

algorithms into models and the export of simulation results to MATLAB for further
analysis. In the robotics field, MATLAB with Simulink is one of the most used
platforms for the modeling and simulation of several systems. Many features

can be added for the simulation, as well as the simulation of dynamics and graphical
modelling, with the possibility of working in real time. To accomplish these features,

it needs to be added that it is called “toolboxes” [1,98–101].

Features

Robot Types Any Robot Type

Sensors
and

Actuators
Any Type

Compatibility Several Possibilities

Engines Custom Engine

Programming
Languages Several Languages Supported

Other Features 2D and 3D Visualization; Paid;

Swarmbot3D

Description

Swambot3d was designed for predicting the 3D kinematics and dynamics of
a single s-bot in a swarm-bot. The main characteristics of this simulation
environment are: 3D dynamics, compatibility with the s-bot’s hardware

and software, interactive control, multi-level models and swarm handling,
and it was built using the Vortex physics engine. The simulation models

of the environment and robots are defined in an external test file written in
XML format. A search was evaluated to find this simulator on the

internet and no results were found [102–104].

Features

Robot Types s-bot

Sensors
and

Actuators
Available under Modelling

Compatibility Not Applicable

Engines Vortex

Programming
Languages XML

Other Features Not Applicable



Sensors 2021, 21, 4031 18 of 25

Table 5. Cont.

Simulators

Creo

Description

In [70] the authors use a different approach to simulate a humanoid
robot using its virtual twin. The robot modelling was made using the Creo
software from PTC Inc., and the Creo is not a simulator, but the presented
approach is an interesting and different way to simulate a robot, differing

from the previously shown simulators. Creo is a 3D computer-aided design
software for product development with scalable range. Creo has

breakthrough innovations in the areas of generative design, real-time simulation,
multi-body design, additive manufacturing, and other features.

Features

Robot Types Not Applicable

Sensors and Actuators Not Applicable

Compatibility Not Applicable

Engines Not Applicable

Programming Languages Not Applicable

Other Features Not Applicable

4.2. Exception Points

This subsection describes some simulators and papers that were considered excep-
tions, found during the research of this SLR. Although they do not completely fulfill the
previously defined requisites, they represent relevant work that it is worth to mention.

1. The first exception point to be discussed in the Table 3 is the Exception 1 found in
the paper [61]. This paper has as its title: “Mathematical modelling, simulation and
experimental verification of a Scara robot”, from Das, M. T., & Dülger, L. C. The
authors developed a complete mathematical model of the Scara robot (Serpent 1 type
robot), but the simulations carried out during the study were made using a numerical
simulator such as MATLAB, and also they do not show how or which simulations
were conducted. However, this paper could be replicated in another simulator such
as the V-REP or Sim-Two, for example.

2. The next point that stands out as an exception (marked as Exception 2 in Table 3), is
the paper [75], Cervera, Enric, et al., “The robot programming network”. The authors
present a system that allows the users to learn robotics topics in a virtual environment
using a web-based laboratory with real robots or 2D/3D simulators. In this case,
the system gathers tools that are fundamental for robotics learning such as learning
the Robot Operating System use, including the possibility to try out in realistic and
non-realistic simulators that are embedded into this web-based system.

3. Another reference that is an exception is [105], where the authors design a simulator
with a realistic visualization of the head of IRYS robot. Although the simulator, made
using the Unreal Engine, is realistic enough in what concern the robot motion and
appearance, it is just to simulate this robot. For that reason it was categorized as
an exception.

4. The last exception is the paper [106], in which the authors present an architecture
for the management of a fleet of cleaning robots and, for this purpose, they design
a simulator to evaluate its framework. The simulator has is called CleanSim and
simulates map dirtiness; in this way, the authors can test their algorithm to improve
the efficiency of the cleaning method. However, this is an exception for not being a
realistic simulator based on a physics engine.

Future work could include the simulation shown in item 1 of this subsection, where the
authors could replicate the modeling made in [61] with a realistic simulator. Another point
to note is that, during the complete reading of the articles, some non-realistic simulators
were found. However, they were discarded although they were used in educational
contexts, as in the case of [105,106]; the main reason is because they were not based on a
physics engine.



Sensors 2021, 21, 4031 19 of 25

4.3. Physics Engines

Throughout the search, reading and analyzing each paper and simulator, one common
point stands out, that they are built with physics engines. Table 6 shows the physics
engines found and a classification in different columns depending on if they are a free or a
propietary solution.

Table 6. Physics Engines.

Free/Open-Source Proprietary

Box2D AGX Multiphysics
Bullet Algodoo

Cannon.js Digital Molecular Matter
Chipmunk Chipmunk

Newton Game Dynamics Euphoria
Open Dynamics Engine Havok

OPAL Reactor
Physics Abstraction Layer Vortex

PhysX
PhyZ

Project Chrono
Siconos

Simulation Open Framework Architecture

As noted in Table 6, there are many available physics engines softwares; some are paid
software and others free. In [7], an evaluation among five free physics engines is presented,
and the author concludes that there is no general physics engine that performs best for any
given task; each has its strengths and weaknesses. Taking this previous consideration into
this work, simulators based on one or more physics engines will overlap the performance
of those built with only one, and that is updated repeatedly.

4.4. Robot Operating System-ROS

Another common feature of the simulators found during the research was the Robot
Operating System (ROS). ROS is a framework for writing robot software. It has several
tools, libraries and conventions that aim to simplify the task of creating complex and
robust robot behavior across a wide variety of robotics platforms. This framework emerged
as an alternative way to create general-purpose robot software. ROS provides standard
operating system services, such as hardware abstraction and low-level device control, the
implementation of commonly used features, message-passing between processes, and
package management. Sets of ROS processes in execution are represented in a graph
architecture where processing occurs at nodes that can receive and send messages such as
multiplex sensors, control, status, planning, actuator and others. Despite the importance of
reactivity and low latency in robot control, ROS itself is not a real-time operating system.
For this instance, ROS is an important, free and open-source tool in the robotics field, being
widely used for makers, researchers and in the industry, and it is integrated into sundry
simulators such as, Gazebo, Webots, MORSE, V-REP and others (https://www.ros.org/,
accessed on 8 June 2021) [35,36,43,44,49,50,52,53,75,77,87,107–112].

5. Conclusions and Future Work

In this paper, a systematic literature review of realistic simulators applied in an
educational context was conducted in order to evaluate whether there is any simulator
capable of simulating a robot prototype using realistic world physics.

By performing this systematic review, questions were answered about the found
papers, providing a current state-of-the-art and a view of this research field. During the
review process, 559 papers were retrieved from six different electronic databases, from
which 50 relevant papers were selected and included in this review, after applying the

https://www.ros.org/


Sensors 2021, 21, 4031 20 of 25

inclusion and exclusion criteria and the quality assessment. Table 7 shows how the selected
papers address the research questions asked in Section 2.1.

Table 7. Selected papers that address the Research Questions.

Research Questions Selected Papers

1: In the context of educational robotics, are there any realistic
simulators capable of simulating any robot prototype?

[30,32,33,36–38]
[41–43,45,49,50]

[51,54–57,59]
[60,62–64,66,67]
[69,71,73–76,78]

2: Are these simulators capable of simulating
the robot’s sensores and/or actuators?

[30–35]
[36,38,39,41–43]

[44–49]
[50–55]
[56–61]
[62–67]
[68–73]

[1,74–78]

3: Is such simulation based on physical motors?

[30–34,36]
[37,38,40–43]

[46–51]
[53,55,56,58,60,61]

[62–65,67,68]
[1,69,72–74,76,77]

Therefore, by reading, analyzing and gathering data from each relevant paper and
simulator, some simulators have been shown to be promising tools to be used in the
educational context for some reasons that we observed.

But first, coming back to answer the research questions (RQ1, RQ2 and RQ3): consid-
ering all the simulators presented in Table 3, the frequency that was cited in the papers by
the different authors, as shown in Table 4, the simulators’ features studied in Section 4.1
and Table 5, and finally, from the considerations made at the end of the previous paragraph
and sections, it is possible to conclude that the simulators that can be easily applied in the
educational context, are: Gazebo, Webots, SimTwo and V-REP.

The reasons for this are: firstly, the long time they have been available for use, that is,
since their launch they continue to receive updates to keep up to date with the technology;
The second characteristic observed was the number of platform and robots prototype
variations (wheeled, legged, humanoids, drones and others) available to be used, or the
possibility to add, configure and use a robot of your own in these simulators; in this
way, allowing simulation in different environments, allowing a high level of abstraction
with high fidelity in the simulation due to the use of physics engines. The third was the
simulator’s ability to execute the simulations under one or more physics engines; this is an
indicator of how realistic the simulation is. Another important feature of these simulators
is that all of them have 3D vision of the robot and the environment, giving us the feeling of
working with the real robot, without having it; Finally, is the capability of integrating with
third party systems or protocols, for example, the integration of Robot Operating System
(ROS), TCP/IP, MATLAB, LabView and others.

As future work, it could be interesting to produce a framework that provides a
guideline for modelling an actuator, sensor or the entire robot in order to upload it into one
of these simulators to test our own robots with different actuators or sensors, and to test
them in different environments, such as a maze arena and line-following circuits.

Author Contributions: All the authors have collaborate in the same way. All authors have read and
agreed to the published version of the manuscript.



Sensors 2021, 21, 4031 21 of 25

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SLR Systematic Literature Review
PICOC Population, Intervention, Comparison, Outcomes, Context
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RQ Research Question
IC Inclusion Criteria
EC Exclusion Criteria
QQ Quality Question
DQ Data Question
ROS Robot Operating System

Appendix A. Data Repository

https://github.com/caioorafael/Systematic-Literature-Review-of-Realistic-Simulators-
to-be-applied-in-Educational-Context.git, accessed on 8 June 2021.

References
1. Žlajpah, L. Simulation in robotics. Math. Comput. Simul. 2008, 79, 879–897. [CrossRef]
2. Reckhaus, M.; Hochgeschwender, N.; Paulus, J.; Shakhimardanov, A.; Kraetzschmar, G.K. An overview about simulation and

emulation in robotics. Proc. Simpar 2010, 365–374.
3. Williams, E.J.; Ülgen, O.M. Simulation Applications in the Automotive Industry. In Use Cases of Discrete Event Simulation; Bangsow

S., Ed.; Springer: Berlin/Heidelberg, Germany, 2012.
4. Xu, J.; Huang, E.; Hsieh, L.; Lee, L.H.; Jia, Q.-S.; Chen, C.-H. Simulation optimization in the era of Industrial 4.0 and the Industrial

Internet. J. Simul. 2016, 10, 310–320. [CrossRef]
5. Currie, C.S.; Fowler, J.W.; Kotiadis, K.; Monks, T.; Onggo, B.S.; Robertson, D.A.; Tako, A.A. How simulation modelling can help

reduce the impact of COVID-19. J. Simul. 2020, 14, 83–97. [CrossRef]
6. Boeing, A.; Bräunl, T. Evaluation of real-time physics simulation systems. In Proceedings of the 5th International Conference on

Computer Graphics and Interactive Techniques in Australia and Southeast Asia, Perth, Australia, 1–4 December 2007; pp. 281–288.
7. Hummel, J.; Wolff, R.; Stein, T.; Gerndt, A.; Kuhlen, T. An evaluation of open source physics engines for use in virtual reality

assembly simulations. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 346–357.
8. Bourg, D.M.; Bywalec, B. Physics for Game Developers: Science, Math, and Code for Realistic Effects; O’Reilly Media, Inc.: Newton,

MA, USA, 2013.
9. Millington, I. Game Physics Engine Development; CRC Press: Boca Raton, FL, USA, 2007.
10. Ferrada-Ferrada, C.; Carrillo-Rosúa, J.; Díaz-Levicoy, D.; Silva-Díaz, F. Robotics from STEM areas in Primary School: A Systematic

Review. Educ. Knowl. Soc. 2020. [CrossRef]
11. Conde, M.Á.; Rodríguez-Sedano, F.J.; Fernández-Llamas, C.; Gonçalves, J.; Lima, J.; García-Peñalvo, F.J. Fostering STEAM

through Challenge Based Learning, Robotics and Physical Devices: A systematic mapping literature review. Comput. Appl. Eng.
Educ. 2021, 29, 46–65. [CrossRef]

12. García-Holgado, A.; Marcos-Pablos, S.; García-Peñalvo, F.J. Guidelines for performing Systematic Research Projects Reviews. Int.
J. Interact. Multimed. Artif. Intell. 2020, 6, 136–144. [CrossRef]

13. Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26.
14. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE: Menen,

Belgium, 2007.
15. Kitchenham, B.A.; Budgen, D.; Brereton, P. Evidence-Based Software Engineering and Systematic Reviews; CRC Press: Boca Raton, FL,

USA, 2015; Volume 4.
16. Dyba, T.; Dingsoyr, T.; Hanssen, G.K. Applying systematic reviews to diverse study types: An experience report. In Proceedings

of the First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), Madrid, Spain, 20–21
September 2007; pp. 225–234.

17. Cooper, H.M. Synthesizing Research: A Guide for Literature Reviews; Sage: Beijing, China, 1998; Volume 2.
18. Orwin, R.G.; Cooper, I.H.; Hedges, L.V. The Handbook of Research Synthesis; Russell Sage Foundation: New York, NY, USA, 1994;

pp. 139–162.
19. Dybå, T.; Kampenes, V.B.; Sjøberg, D.I.K. A Systematic Review of Statistical Power in Software Engineering Experiments. Inf.

Softw. Technol. 2006, 48, 745–755. [CrossRef]

https://github.com/caioorafael/Systematic-Literature-Review-of-Realistic-Simulators-to-be-applied-in-Educational-Context.git
https://github.com/caioorafael/Systematic-Literature-Review-of-Realistic-Simulators-to-be-applied-in-Educational-Context.git
http://doi.org/10.1016/j.matcom.2008.02.017
http://dx.doi.org/10.1057/s41273-016-0037-6
http://dx.doi.org/10.1080/17477778.2020.1751570
http://dx.doi.org/10.14201/eks.22036
http://dx.doi.org/10.1002/cae.22354
http://dx.doi.org/10.9781/ijimai.2020.05.005
http://dx.doi.org/10.1016/j.infsof.2005.08.009


Sensors 2021, 21, 4031 22 of 25

20. Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions 4.2.5 [updated May 2005]. In The
Cochrane Library; Issue 3; John Wiley & Sons, Ltd.: Chichester, UK, 2005.

21. Mulrow, C.; Cook, D. (Eds.) Systematic Reviews: Synthesis of Best Evidence for Health Care Decisions; Am. College of Physicians:
Philadelphia, PA, USA, 1998.

22. Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Blackwell: Oxford, UK, 2006.
23. Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Britten, N.; Arai, L.; Roen, K.; Rodgers, M. Developing guidance on the conduct

of narrative synthesis in systematic reviews. J. Epidemiol. Community Health 2005, 59 (Suppl. 1), A7.
24. Jpt Chh, G.S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1. 0; [Updated March 2011]; The Cochrane

Collaboration: London, UK, 2011.
25. La, A.H.; Szabo, I.; Le Brun, L.; Owen, I.; Fletcher, G.; Hill, M. An evidence-based approach to scoping reviews. Electron. J. Inf.

Syst. Eval. 2011, 14, 46.
26. Ferreras-Fernández, T.; Martín-Rodero, H.; García-Peñalvo, F.J.; Merlo-Vega, J.A. The systematic review of literature in LIS: An

approach. In Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality,
Salamanca, Spain, 2–4 November 2016; pp. 291–296.

27. Rodero, H.M. La búSqueda Bibliográfica, Pilar Fundamental de la Medicina Basada en la Evidencia: Evaluación Multivariante en
las Enfermedades Nutricionales y Metabólicas. Ph.D. Thesis, Universidad Miguel Hernández, Elche, Spain, 2014.

28. Moher, D.; Altman, D.G.; Liberati, A.; Tetzlaff, J. PRISMA statement. Epidemiology 2011, 22, 128. [CrossRef]
29. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-

analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [CrossRef] [PubMed]
30. Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle,

F.; et al. ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5027–5034.

31. Gonçalves, J.; Lima, J.; Costa, P.G. DC motors modeling resorting to a simple setup and estimation procedure. In CON-
TROLO’2014–Proceedings of the 11th Portuguese Conference on Automatic Control; Springer: Cham, Switzerland, 2015; pp. 441–447.

32. Lima, J.L.; Goncalves, J.C.; Costa, P.G.; Moreira, A.P. Humanoid low-level controller development based on a realistic simulation.
Int. J. Humanoid Robot. 2010, 7, 587–607. [CrossRef]

33. Lima, J.; Gonçalves, J.; Costa, P.; Moreira, A. Humanoid realistic simulator: The servomotor joint modeling. In Proceedings of the
6th International Conference on Informatics in Control, Automation and Robotics, Milan, Italy, 2–5 July 2009.

34. Lima, J.; Gonçalves, J.; Costa, P.; Moreira, A. Humanoid robot simulator: A realistic dynamics approach. In CONTROLO 2008-The
8th Portuguese Conference on Automatic Control; Springer: Cham, Switzerland, 2008.

35. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. ICRA Workshop Open Source Softw. 2009, 3, 5.

36. Afanasyev, I.; Sagitov, A.; Magid, E. ROS-based SLAM for a Gazebo-simulated mobile robot in image-based 3D model of indoor
environment. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Catania,
Italy, 26–29 October 2015; pp. 273–283.

37. Martins, F.N.; Gomes, I.S.; Santos, C.R. RoSoS-A free and open-source robot soccer simulator for educational robotics. In Robotics;
Springer: Cham, Switzerland, 2016; pp. 87–102.

38. Paulo, C.; José, G.; José, L.; Paulo, M. Simtwo realistic simulator: A tool for the development and validation of robot software.
Theory Appl. Math. Comput. Sci. 2011, 1, 17–33.

39. Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and education. In Proceedings
of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 1400–1405.

40. Klein, J.; Spector, L. 3d multi-agent simulations in the breve simulation environment. In Artificial Life Models in Software; Springer:
London, UK, 2009; pp. 79–106.

41. Eckert, L.; Piardi, L.; Lima, J.; Costa, P.; Valente, A.; Nakano, A. 3D Simulator Based on SimTwo to Evaluate Algorithms in
Micromouse Competition. In World Conference on Information Systems and Technologies; Springer: Cham, Swizterland, 2019;
pp. 896–903.

42. Piardi, L.; Eckert, L.; Lima, J.; Costat, P.; Valente, A.; Nakano, A. 3D simulator with hardware-in-the-loop capability for the
micromouse competition. In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), Porto, Portugal, 24–26 April 2019; pp. 1–6.

43. Farias, G.; Fabregas, E.; Peralta, E.; Torres, E.; Dormido, S. A Khepera IV library for robotic control education using V-REP.
IFAC-PapersOnLine 2017, 50, 9150–9155. [CrossRef]

44. Cervera, E.; Casañ, G.; Tellez, R. Cloud Simulations for RoboCup. In Robot World Cup; Springer: Cham, Swizterland, 2017;
pp. 180–189.

45. Ferrein, A.; Maier, C.; Mühlbacher, C.; Niemueller, T.; Steinbauer, G.; Vassos, S. Controlling logistics robots with the action-based
language YAGI. In Proceedings of the International Conference on Intelligent Robotics and Applications, Tokyo, Japan, 22–24
August 2016; pp. 525–537.

46. Michel, O. Cyberbotics Ltd. Webots™: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5. [CrossRef]

http://dx.doi.org/10.1097/EDE.0b013e3181fe7825
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
http://dx.doi.org/10.1142/S0219843610002131
http://dx.doi.org/10.1016/j.ifacol.2017.08.1721
http://dx.doi.org/10.5772/5618


Sensors 2021, 21, 4031 23 of 25

47. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28
September–2 October 2004; Volume 3, pp. 2149–2154.

48. Denisov, A.; Budkov, V.; Mikhalchenko, D. Designing simulation model of humanoid robot to study servo control system. In
Proceedings of the International Conference on Interactive Collaborative Robotics, ICR 2016, Budapest, Hungary, 24–26 August
2016; pp. 69–78.

49. Peralta, E.; Fabregas, E.; Farias, G.; Vargas, H.; Dormido, S. Development of a Khepera IV Library for the V-REP Simulator.
IFAC-PapersOnLine 2016, 49, 81–86. [CrossRef]

50. Chebotareva, E.; Gavrilova, L. Educational Mobile Robotics Project “ROS-Controlled Balancing Robot” Based on Arduino and
Raspberry Pi. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE),
Kazan, Russia, 7–10 October 2019; pp. 209–214.

51. Gonçalves, J.; Lima, J.; Malheiros, P.; Costa, P. Fostering advances in mechatronics and robotics resorting to simulation. IFAC Proc.
Vol. 2010, 43, 326–331. [CrossRef]

52. Pinho, T.; Moreira, A.P.; Boaventura-Cunha, J. Framework using ROS and SimTwo simulator for realistic test of mobile robot
controllers. In CONTROLO’2014–Proceedings of the 11th Portuguese Conference on Automatic Control; Springer: Cham, Swizterland,
2015; pp. 751–759.

53. Shimchik, I.; Sagitov, A.; Afanasyev, I.; Matsuno, F.; Magid, E. Golf cart prototype development and navigation simulation using
ROS and Gazebo. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 75, p. 09005.

54. Lima, J.; Costa, P.; Brito, T.; Piardi, L. Hardware-in-the-loop simulation approach for the Robot at Factory Lite competition
proposal. In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),
Porto, Portugal, 24–26 April 2019; pp. 1–6.

55. Lima, J.; Gonçalves, J.; Costa, P.; Moreira, A. Humanoid robot gait planning resorting to an adaptive simulated annealing
algorithm. In Proceedings of the 10th Conference on Autonomous Robot Systems and Competitions, Leiria, Portugal, 24
March 2010.

56. Lima, J.L.; Gonçalves, J.C.; Costa, P.G.; Moreira, A.P. Humanoid robot simulation with a joint trajectory optimized controller.
In Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg,
Germany, 15–18 September 2008; pp. 986–993.

57. Ferreira, N.F.; Araujo, A.; Couceiro, M.S.; Portugal, D. Intensive summer course in robotics–Robotcraft. Appl. Comput. Inform. 2020.
[CrossRef]

58. Haber, A.; McGill, M.; Sammut, C. Jmesim: An open source, multi platform robotics simulator. In Proceedings of the Australasian
Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012.

59. Costa, P.J.; Moreira, N.; Campos, D.; Gonçalves, J.; Lima, J.; Costa, P.L. Localization and navigation of an omnidirectional mobile
robot: the robot@ factory case study. IEEE Rev. Iberoam. Tecnol. Del Aprendiz. 2016, 11, 1–9. [CrossRef]

60. Vaughan, R. Massively multi-robot simulation in stage. Swarm Intell. 2008, 2, 189–208. [CrossRef]
61. Das, M.T.; Dülger, L.C. Mathematical modelling, simulation and experimental verification of a scara robot. Simul. Model. Pract.

Theory 2005, 13, 257–271. [CrossRef]
62. Campos, D.; Santos, J.; Gonçalves, J.; Costa, P. Modeling and simulation of a hacked neato xv-11 laser scanner. In Robot 2015:

Second Iberian Robotics Conference; Springer: Cham, Swizterland, 2016; pp. 425–436.
63. Lima, J.; Gonçalves, J.; Costa, P.J.; Moreira, A.P. Modeling and simulation of a laser scanner sensor: An industrial application case

study. In Advances in Sustainable and Competitive Manufacturing Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 245–258.
64. Gonçalves, J.; Lima, J.; Costa, P.J.; Moreira, A.P. Modeling and simulation of the emg30 geared motor with encoder resorting

to simtwo: The official robot@ factory simulator. In Advances in Sustainable and Competitive Manufacturing Systems; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 307–314.

65. Lima, J.; Gonçalves, J.; Costa, P.J. Modeling of a low cost laser scanner sensor. In CONTROLO’2014–Proceedings of the 11th
Portuguese Conference on Automatic Control; Springer: Berlin/Heidelberg, Germany, 2015; pp. 697–705.

66. Vega, J.; Cañas, J.M. PiBot: An open low-cost robotic platform with camera for STEM education. Electronics 2018, 7, 430. [CrossRef]
67. Gonçalves, J.; Silva, M.; Costa, P.; Sousa, A. Proposal of a low cost educational mobile robot experiment: An approach based

on hardware and simulation. In Proceedings of the 6th Internation Conference on Robotics on Education, Yverdon-les-Bains,
Switzerland, 21 May 2015.

68. Lima, J.; Gonçalves, J.; Costa, P.; Moreira, A. Realistic behaviour simulation of a humanoid robot. In Proceedings of the 8th
Conference on Autonomous Robot Systems and Competitions, Aveiro, Portugal, 2–6 April 2008.

69. Gonçalves, J.; Lima, J.; Malheiros, P.; Costa, P. Realistic simulation of a lego mindstorms nxt based robot. In Proceedings of the
2009 IEEE Control Applications, (CCA) & Intelligent Control, St. Petersburg, Russia, 8–10 July 2009; pp. 1242–1247.

70. Verner, I.; Cuperman, D.; Fang, A.; Reitman, M.; Romm, T.; Balikin, G. Robot online learning through digital twin experiments:
A weightlifting project. In Online Engineering & Internet of Things; Springer: Berlin/Heidelberg, Germany, 2018; pp. 307–314.

71. Braun, J.; Fernes, L.A.; Moya, T.; Oliveira, V.; Brito, T.; Lima, J.; Costa, P. Robot@ factory lite: An educational approach for the
competition with simulated and real environment. In Proceedings of the Iberian Robotics Conference, Porto, Portugal, 20–22
November 2019; pp. 478–489.

http://dx.doi.org/10.1016/j.ifacol.2016.07.157
http://dx.doi.org/10.3182/20100701-2-PT-4011.00056
http://dx.doi.org/10.1016/j.aci.2018.04.005
http://dx.doi.org/10.1109/RITA.2016.2518420
http://dx.doi.org/10.1007/s11721-008-0014-4
http://dx.doi.org/10.1016/j.simpat.2004.11.004
http://dx.doi.org/10.3390/electronics7120430


Sensors 2021, 21, 4031 24 of 25

72. Gonçalves, J.; Lima, J.; Oliveira, H.; Costa, P. Sensor and actuator modeling of a realistic wheeled mobile robot simulator.
In Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg,
Germany, 15–18 September 2008; pp. 980–985.

73. Gonçalves, J.; Lima, J.; Malheiros, P.; Costa, P. Sensor and actuator stochastic modeling of the Lego Mindstorms NXT educational
Kit. In Proceedings of the 10th Conference on Mobile Robots and Competitions, Leiria, Portugal, 24 March 2010; pp. 11–16.

74. Zwilling, F.; Niemueller, T.; Lakemeyer, G. Simulation for the RoboCup logistics league with real-world environment agency and
multi-level abstraction. In Robot Soccer World Cup; Springer: Cham, Switzerland, 2014; pp. 220–232.

75. Cervera, E.; Martinet, P.; Marin, R.; Moughlbay, A.A.; Del Pobil, A.P.; Alemany, J.; Esteller, R.; Casañ, G. The robot programming
network. J. Intell. Robot. Syst. 2016, 81, 77–95. [CrossRef]

76. Browning, B.; Tryzelaar, E. Übersim: a multi-robot simulator for robot soccer. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, Melbourne Australia, 14–18 July 2003; pp. 948–949.

77. Rohmer, E.; Singh, S.P.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326.

78. Gawryszewski, M.; Kmiecik, P.; Granosik, G. V-REP and LabVIEW in the Service of Education. In Robotics in Education; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 15–27.

79. Petry, M.; Moreira, A.P.; Reis, L.P.; Rossetti, R. Intelligent wheelchair simulation: Requirements and architectural issues.
In Proceedings of the 11th International Conference on Mobile Robotics and Competitions, Lisbon, Portugal, 6 April 2011;
pp. 102–107.

80. Boedecker, J.; Asada, M. Simspark–concepts and application in the robocup 3d soccer simulation league. Auton. Robot. 2008,
174, 181.

81. Xu, Y.; Vatankhah, H. Simspark: An open source robot simulator developed by the robocup community. In Robot Soccer World
Cup; Springer: Berlin/Heidelberg, Germany, 2013; pp. 632–639.

82. Michel, O. Webots: Symbiosis between virtual and real mobile robots. In International Conference on Virtual Worlds; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 254–263.

83. Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle, F.
ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 2012, 6, 271–295. [CrossRef]

84. Gerkey, B.; Vaughan, R.T.; Howard, A. The player/stage project: Tools for multi-robot and distributed sensor systems. In Pro-
ceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003; Volume 1,
pp. 317–323.

85. Lemaignan, S.; Echeverria, G.; Karg, M.; Mainprice, J.; Kirsch, A.; Alami, R. Human-robot interaction in the MORSE simulator.
In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, MA, USA, 5–8
March 2012; pp. 181–182.

86. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular open robots simulation engine: Morse. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 46–51.

87. Noori, F.M.; Portugal, D.; Rocha, R.P.; Couceiro, M.S. On 3D simulators for multi-robot systems in ROS: MORSE or Gazebo?
In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China,
11–13 October 2017; pp. 19–24.

88. Freese, M.; Singh, S.; Ozaki, F.; Matsuhira, N. Virtual robot experimentation platform v-rep: A versatile 3d robot simulator.
In Proceedings of the International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Darmstadt,
Germany, 15–18 November 2010; pp. 51–62.

89. Friedmann, M. Simulation of Autonomous Robot Teams with Adaptable Levels of Abstraction. Ph.D. Thesis, Technische
Universität, Berlin, Germany, 2010.

90. Jackson, J. Microsoft robotics studio: A technical introduction. IEEE Robot. Autom. Mag. 2007, 14, 82–87. [CrossRef]
91. Cepeda, J.S.; Chaimowicz, L.; Soto, R. Exploring Microsoft Robotics Studio as a mechanism for service-oriented robotics.

In Proceedings of the 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, Montreal, QC, Canada, 3–5
October 2010; pp. 7–12.

92. Workman, K.; Elzer, S. Utilizing Microsoft robotics studio in undergraduate robotics. J. Comput. Sci. Coll. 2009, 24, 65–71.
93. Kanehiro, F.; Hirukawa, H.; Kajita, S. Openhrp: Open architecture humanoid robotics platform. Int. J. Robot. Res. 2004, 23,

155–165. [CrossRef]
94. Cisneros, R.; Yoshida, E.; Yokoi, K. Ball dynamics simulation on openhrp3. In Proceedings of the 2012 IEEE International

Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 871–877.
95. Michel, O. Khepera Simulator Version 2.0, User Manual. Université de Nice–Sophia Antipolis; Laboratoire I3S-CNRS, France/EPFL–Lausanne,

Swiss: Valbonne, France, 1996.
96. McDowell, P.; Darken, R.; Sullivan, J.; Johnson, E. Delta3D: A complete open source game and simulation engine for building

military training systems. J. Def. Model. Simul. 2006, 3, 143–154. [CrossRef]
97. Darken, R.; McDowell, P.; Johnson, E. Projects in VR: The Delta3D open source game engine. IEEE Comput. Graph. Appl. 2005, 25,

10–12. [CrossRef]
98. Corke, P.I. A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 1996, 3, 24–32. [CrossRef]

http://dx.doi.org/10.1007/s10846-015-0201-7
http://dx.doi.org/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1109/M-RA.2007.905745
http://dx.doi.org/10.1177/0278364904041324
http://dx.doi.org/10.1177/154851290600300302
http://dx.doi.org/10.1109/MCG.2005.67
http://dx.doi.org/10.1109/100.486658


Sensors 2021, 21, 4031 25 of 25

99. Corke, P.I. A computer tool for simulation and analysis: The Robotics Toolbox for MATLAB. In Proceedings of the Australian
Conference on Robotics Association, Brisbane, Australia, 5–7 July 1995; pp. 319–330.

100. Toz, M.; Kucuk, S. Dynamics simulation toolbox for industrial robot manipulators. Comput. Appl. Eng. Educ. 2010, 18, 319–330.
[CrossRef]

101. Karakaya, S.; Kucukyildiz, G.; Ocak, H. A new mobile robot toolbox for MATLAB. J. Intell. Robot. Syst. 2017, 87, 125–140.
[CrossRef]

102. Mondada, F.; Pettinaro, G.C.; Guignard, A.; Kwee, I.W.; Floreano, D.; Deneubourg, J.L.; Nolfi, S.; Gambardella, L.M.; Dorigo, M.
SWARM-BOT: A new distributed robotic concept. Auton. Robot. 2004, 17, 193–221. [CrossRef]

103. Pettinaro, G.C.; Kwee, I.W.; Gambardella, L.M. Definition, Implementation, and Calibration of the Swarmbot3d Simulator; Technical
Report No. IDSIA-21-03; IDSIA: Manno, Switzerland, 2003.

104. Pettinaro, G.C.; Kwee, I.W.; Gambardella, L.M. Swarmbot3D User Manual. 2003. Available online: https://repository.supsi.ch/
5558/1/IDSIA-22-03.pdf (accessed on 11 June 2021).

105. Dąbek, P.; Trojnacki, M.; Jaroszek, P.; Zawieska, K. Concept, Physical Design and Simulator of IRYS Social Robot Head.
In Proceedings of the International Conference Mechatronics, Brno, Czech Republic, 6–8 September 2017; pp. 91–100.

106. Costa, H.; Tavares, P.; Santos, J.; Rio, V.; Sousa, A. Simulation of a System Architecture for Cooperative Robotic Cleaning.
In Proceedings of the Robot 2015: Second Iberian Robotics Conference, Lisbon, Portugal, 19–21 November 2015; pp. 717–728.

107. Couceiro, M.S.; Araújo, A.G.; Tatarian, K.; Ferreira, N.M. RobotCraft: The first international collective internship for advanced
robotics training. In International Conference on Robotics and Education RiE 2017; Springer: Cham, Switzerland, 2018; pp. 31–43.

108. Conte, G.; Scaradozzi, D.; Mannocchi, D.; Raspa, P.; Panebianco, L.; Screpanti, L. Development and experimental tests of a ROS
multi-agent structure for autonomous surface vehicles. J. Intell. Robot. Syst. 2018, 92, 705–718. [CrossRef]

109. Araújo, A.; Portugal, D.; Couceiro, M.S.; Rocha, R.P. Integrating Arduino-based educational mobile robots in ROS. J. Intell. Robot.
Syst. 2015, 77, 281–298. [CrossRef]

110. Tatarian, K.; Pereira, S.; Couceiro, M.S.; Portugal, D. Tailoring a ROS educational programming language architecture. In Interna-
tional Conference on Robotics and Education RiE; Springer: Cham, Switzerland, 2018; pp. 217–229.

111. Koubâa, A. (Ed.). Robot Operating System (ROS); Springer: Berlin/Heidelberg, Germany, 2017; Volume 1, pp. 112–156.
112. Quigley, M.; Gerkey, B.; Smart, W.D. Programming Robots with ROS: A Practical Introduction to the Robot Operating System; O’Reilly

Media, Inc.: Sebastopol, CA, USA, 2015.

http://dx.doi.org/10.1002/cae.20262
http://dx.doi.org/10.1007/s10846-017-0480-2
http://dx.doi.org/10.1023/B:AURO.0000033972.50769.1c
https://repository.supsi.ch/5558/1/IDSIA-22-03.pdf
https://repository.supsi.ch/5558/1/IDSIA-22-03.pdf
http://dx.doi.org/10.1007/s10846-017-0700-9
http://dx.doi.org/10.1007/s10846-013-0007-4

	Introduction
	Method
	Planning the Review
	Inclusion and Exclusion Criteria
	Search Methodology
	Quality Criteria

	Results
	Discussion and Results
	Simulators Features
	Exception Points
	Physics Engines
	Robot Operating System-ROS

	Conclusions and Future Work
	Data Repository
	References

