

Relationship of knowledge to learn in programming methodology and evaluation of computational thinking

Arturo Rojas López

Division of TIC Universidad Tecnológica de Puebla arturo.rojas@utpuebla.edu.mx

Francisco José García Peñalvo

Computer Science Department / Research Institute for Educational Sciences

GRIAL Research Group University of Salamanca

November 2-4, 2016

INTRODUCTION

- Computational Thinking CT
- Disciplines
 - Science, Technology, Engineering and Mathematics
- CT in not a synonym for programming
- In Puebla Mexico
 - Desertion
 - High and variable rate of failure
 - Lack of academic performance
- Propose other ways

CONTEXT

• Redesing Programming methodology course

• Each tematic unit is written based on a cognitive category Bloom's taxonomy.

• CT

- solving problems
- Relationship with the Computer Science

CONTEXT

• The relationship between the CT, teach programming and Bloom's taxonomy

Bloom's taxonomy	Skill	Thematic unit
Analysis	Abstraction and decomposition	Basics
Application	generalization	expressions
Synthesis	algorithmic design	algorithms and flowcharts
Evaluation	evaluation	algorithms and flowcharts

• UK Bebras

• Computer Olympiad Talent Search

DESCRIPTION

12345

b2

a(1)

c(3)

- Mobile decomposition
- Kangaroo abstraction
- Spies generalization

45

2 1

(5)e

(4)d

6)f

• Beavers on the run – algorithmic design

6 ef

• Puddle jumping – evaluation

ab (2)

cd(3)

6)abef

(6) abcdef

abcdef(3)

abcd (3)

RESULTS

SCENARIO	MODEL	EVALUATION	RIGHT / WRONG	TIME	
1	Online	Full course online	5 right	15 days	
2	Online	Full course online	W- beavers on the run	1 month	
3	Semi distance	Counseling Laboratory	W-puddle jumping	1 month	
4	Online	Online counseling	W-beavers and puddle	1 month	
5	Online	Online	W-Spies	1 month	
6	Semi distance	Academy	W-beavers, puddle and spies	Academy	
7	Semi distance	Departmental Laboratory	R-Kangaroo or Mobile	Academy	
8	Classroom	Academy	5 wrong	Academy	

RESULTS - EXPERIMENT

- 18 volunteer students
- Knowledge already familiar from his first course
- Later perfomed the evaluation of CT
- Verify correspondence
- Results determination 6 cases

RESULTS

Unit	Knowledge	Α	B	С	D	E	F
1	Type of data Variable identifiers	6	2	2	4	4	0
2	Arithmetic operators Logical operatos Relatinal operators Hierarchy of operatos Solve expressions	4	8	0			6
3	Using counter and accumulator variable Selection structure (conditional) Structure repetition (cycle) Flowchart Design of algorithms	3	0	13	2	0	0
A: Claim to know all the knowledge and correct answers							
B: say know all the knowledge, but incorrect responses							

C: say know some of the knowledge and correct answers

D: knowledge unfamiliar and wrong reactive for two skills

E: familiar with all knowledge and wrong reactive for two skills

F: not yet sure and erroneous reagents

CONCLUTIONS

- Justified proposal
- Evaluation computational thinking how to study
- Based on teaching experience options of learning environment are determined
- Two experimental groups
- Accredited students, desertions and academic level
- Learning environment in Moodle platform

ACKNOWLEDGEMENTS

• This research work is made within University of Salamanca PhD Programme on Education in the Knowledge Society scope.

Relationship of knowledge to learn in programming methodology and evaluation of computational thinking

Arturo Rojas López

Division of TIC Universidad Tecnológica de Puebla arturo.rojas@utpuebla.edu.mx

Francisco José García Peñalvo

Computer Science Department / Research Institute for Educational Sciences

GRIAL Research Group University of Salamanca

November 2-4, 2016

